Cemented carbide (WC-Co), the widely used tool-die material, is difficult to be machined by conventional and nonconventional techniques. This inspired exploring additive manufacturing (AM) of this material. However, porosity, brittleness due to cobalt depletion, etc. have been reported in the literature with rare success. For the AM of WC-Co, the current work focuses on directed energy deposition, which can be implemented with existing laser cutting-welding workstations, with modifications. To ensure the retention of cobalt even after inevitable vaporization of some of its initial content during deposition, 20 wt. % of Co was mixed with WC powder by low-energy ball milling. Laser power, scan speed, and powder flow rate were varied following a full-factorial design of experiments. The analysis of variance revealed that the experimental model and most of the parameters were significant. Only the laser power came out to be insignificant for the contact angle. The track height and width increased with the laser power and reduced with the scan speed. The contact angle increased with the scan speed and reduced with the powder flow rate. Cross sections of the deposited track showed no pores or cracks. Multiobjective optimization with gray relational analysis was conducted to get the parameter combination giving high values of the contact angle, track height, and width simultaneously. The optimum parameter combination, thus, obtained is 700 W laser power, 5 mm/s scan speed, and 5 g/min powder flow rate. This yielded 305 ± 40 μm track height, 2132 ± 33 μm width, and 152° ± 2° contact angle.

1.
M.
Xing
,
H.
Wang
,
Z.
Zhao
,
H.
Lu
,
C.
Liu
,
L.
Lin
,
M.
Wang
, and
X.
Song
, “
Additive manufacturing of cemented carbides inserts with high mechanical performance
,”
Mater. Sci. Eng.: A
861
,
144350
(
2022
).
2.
J.
Liu
,
J.
Chen
,
L.
Zhou
,
B.
Liu
,
Y.
Lu
,
S.
Wu
,
X.
Deng
,
Z.
Lu
,
Z.
Xie
,
W.
Liu
,
J.
Liu
, and
Z.
Qu
, “
Role of Co content on densification and microstructure of WC–Co cemented carbides prepared by selective laser melting
,”
Acta Metall. Sin.
34
,
1245
1254
(
2021
).
3.
C. M.
Fernandes
and
A. M. R.
Senos
, “
Cemented carbide phase diagrams: A review
,”
Int. J. Refract. Met. Hard Mater.
29
,
405
418
(
2011
).
4.
C.
Chen
,
B.
Huang
,
Z.
Liu
,
Y.
Li
,
D.
Zou
,
T.
Liu
,
Y.
Chang
, and
L.
Chen
, “
Additive manufacturing of WC-Co cemented carbides: Process, microstructure, and mechanical properties
,”
Addit. Manuf.
63
,
103410
(
2023
).
5.
E.
Uhlmann
,
A.
Bergmann
, and
W.
Gridin
, “
Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting
,”
Proc. CIRP
35
,
8
15
(
2015
).
6.
X.
Li
,
Y.
Zhao
,
Z.
Guo
,
Y.
Liu
,
H.
Wang
,
J.
Zhang
,
D.
Yi
,
Y.
Cao
,
X.
Yang
,
B.
Liu
,
Y.
Liu
, and
P.
Bai
, “
Influence of different substrates on the microstructure and mechanical properties of WC-12Co cemented carbide fabricated via laser melting deposition
,”
Int. J. Refract. Met. Hard Mater.
104
,
105787
(
2022
).
7.
S.
Fries
,
A.
Vogelpoth
,
A.
Kaletsch
, and
C.
Broeckmann
, “
Influence of post heat treatment on microstructure and fracture strength of cemented carbides manufactured using laser-based additive manufacturing
,”
Int. J. Refract. Met. Hard Mater.
111
,
106085
(
2023
).
8.
S.
Fries
,
S.
Genilke
,
M. B.
Wilms
,
M.
Seimann
,
A.
Weisheit
,
A.
Kaletsch
,
T.
Bergs
,
J. H.
Schleifenbaum
, and
C.
Broeckmann
, “
Laser-based additive manufacturing of WC–Co with high-temperature powder bed preheating
,”
Steel Res. Int.
91
,
1900511
(
2020
).
9.
J.
Chen
,
M.
Huang
,
Z. Z.
Fang
,
M.
Koopman
,
W.
Liu
,
X.
Deng
,
Z.
Zhao
,
S.
Chen
,
S.
Wu
,
J.
Liu
,
W.
Qi
, and
Z.
Wang
, “
Microstructure analysis of high density WC-Co composite prepared by one step selective laser melting
,”
Int. J. Refract. Met. Hard Mater.
84
,
104980
(
2019
).
10.
J.
Wang
,
Y.
Han
,
Y.
Zhao
,
X.
Li
,
D.
Yi
,
Z.
Guo
,
Y.
Cao
,
B.
Liu
, and
H. P.
Tang
, “
Microstructure and properties of WC-12Co cemented carbide fabricated via selective electron beam melting
,”
Int. J. Refract. Met. Hard Mater.
106
,
105847
(
2022
).
11.
I.
Konyashin
,
H.
Hinners
,
B.
Ries
,
A.
Kirchner
,
B.
Klöden
,
B.
Kieback
,
R. W. N.
Nilen
, and
D.
Sidorenko
, “
Additive manufacturing of WC-13%Co by selective electron beam melting: Achievements and challenges
,”
Int. J. Refract. Met. Hard Mater.
84
,
105028
(
2019
).
12.
T. A.
Wolfe
,
R. M.
Shah
,
K. C.
Prough
, and
J. L.
Trasorras
, “
Binder jetting 3D printed cemented carbide: Mechanical and wear properties of medium and coarse grades
,”
Int. J. Refract. Met. Hard Mater.
113
,
106197
(
2023
).
13.
C. L.
Cramer
,
N. R.
Wieber
,
T. G.
Aguirre
,
R. A.
Lowden
, and
A. M.
Elliott
, “
Shape retention and infiltration height in complex WC-Co parts made via binder jet of WC with subsequent Co melt infiltration
,”
Addit. Manuf.
29
,
100828
(
2019
).
14.
M.
Mariani
,
I.
Goncharov
,
D.
Mariani
,
G. P.
De Gaudenzi
,
A.
Popovich
,
N.
Lecis
, and
M.
Vedani
, “
Mechanical and microstructural characterization of WC-Co consolidated by binder jetting additive manufacturing
,”
Int. J. Refract. Met. Hard Mater.
100
,
105639
(
2021
).
15.
H.
Kim
,
J.-I.
Kim
,
Y.
Do Kim
,
H.
Jeong
, and
S.-S.
Ryu
, “
Material extrusion-based three-dimensional printing of WC–Co alloy with a paste prepared by powder coating
,”
Addit. Manuf.
52
,
102679
(
2022
).
16.
K.-W.
Kim
,
G.-S.
Ham
,
S.-H.
Park
,
J.-W.
Cho
, and
K.-A.
Lee
, “
Direct energy deposition of ultrastrong WC-12Co cemented carbide: Fabrication, microstructure and compressive properties
,”
Int. J. Refract. Met. Hard Mater.
99
,
105591
(
2021
).
17.
K.-W.
Kim
,
A. B.
Kale
,
Y.-H.
Cho
,
S.-H.
Park
, and
K.-A.
Lee
, “
Microstructural and wear properties of WC-12Co cemented carbide fabricated by direct energy deposition
,”
Wear
518 519
,
204653
(
2023
).
18.
A. H.
Habibi
,
R.
Shoja Razavi
,
G. H.
Borhani
, and
M.
Erfanmanesh
, “
Effect of argon shroud protection on the laser cladding of nanostructured WC-12Co powder
,”
J. Mater. Eng. Perform.
30
,
3313
3320
(
2021
).
19.
T.
Yamaguchi
and
H.
Hagino
, “
Effects of the ambient oxygen concentration on WC-12Co cermet coatings fabricated by laser cladding
,”
Opt. Laser Technol.
139
,
106922
(
2021
).
20.
J.
Liu
,
J.
Chen
,
Y.
Lu
,
X.
Deng
,
S.
Wu
, and
Z.
Lu
, “
WC grain growth behavior during selective laser melting of WC–Co cemented carbides
,”
Acta Metall. Sin.
36
,
949
961
(
2023
).
21.
A.
Fortunato
,
G.
Valli
,
E.
Liverani
, and
A.
Ascari
, “
Additive manufacturing of WC-Co cutting tools for gear production
,”
Lasers Manuf. Mater. Process.
6
,
247
262
(
2019
).
22.
A.
Shrivastava
,
A. K.
Singh
,
A.
Sadhu
,
A.
Chattopadhyay
,
S.
Mukherjee
, and
S. S.
Chakraborty
,
Laser Applications in Manufacturing
(
CRC Press
, Boca Raton, FL, 2023).
23.
M.
Erfanmanesh
,
H.
Abdollah-Pour
,
H.
Mohammadian-Semnani
, and
R.
Shoja-Razavi
, “
An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel
,”
Opt. Laser Technol.
97
,
180
186
(
2017
).
24.
A. K.
Singh
,
K. S.
Bal
,
D.
Dey
,
A. K.
Das
,
A. R.
Pal
,
D. K.
Pratihar
, and
A.
Roy Choudhury
, “
Experimental investigation and parametric optimization for minimization of dilution during direct laser metal deposition of tungsten carbide and cobalt powder mixture on SS304 substrate
,”
Powder Technol.
390
,
339
353
(
2021
).
25.
Z.
Xie
,
C.
Zhang
,
R.
Wang
,
D.
Li
,
Y.
Zhang
,
G.
Li
, and
X.
Lu
, “
Microstructure and wear resistance of WC/Co-based coating on copper by plasma cladding
,”
J. Mater. Res. Technol.
15
,
821
833
(
2021
).
26.
A.
Shrivastava
,
S.
Mukherjee
, and
S. S.
Chakraborty
, “
Addressing the challenges in remanufacturing by laser-based material deposition techniques
,”
Opt. Laser Technol.
144
,
107404
(
2021
).
27.
S.
Mondal
,
C. P.
Paul
,
L. M.
Kukreja
,
A.
Bandyopadhyay
, and
P. K.
Pal
, “
Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface
,”
Int. J. Adv. Manuf. Technol.
66
,
91
96
(
2013
).
28.
J. L.
Deng
, “
Introduction to grey system theory
,”
J. Grey Syst.
1
,
1
24
(
1989
).
29.
A.
Datta
,
A.
Shrivastava
,
N.
Mandal
,
H.
Roy
, and
S. S.
Chakraborty
, “
A comparative investigation of butt friction stir welding of aluminium alloys, AA 1100 and AA 7075, with AISI 304 stainless steel
,”
Weld. World
67
,
1449
1465
(
2023
).
You do not currently have access to this content.