In this study, the experimental results of fiber laser cutting of Inconel 600 was modeled and optimized by combining artificial neural networks (ANNs) and particle swarm optimization (PSO). The impact of cutting criteria on the temperature adjacent to the cut kerf and roughness of the cutting edge was experimentally evaluated. The independent variables are the cutting speed, focal length, and laser power. The fiber laser cutting characteristics are modeled at different cutting conditions by the ANN method according to the experimental data. The findings indicated that the ANN is performing reasonably well in dealing with the training and test datasets. Also, the multiobjective PSO has been developed to effectively optimize the laser cutting procedure parameters in order to achieve the maximum temperature (the temperature upper than 370 °C) and minimum roughness (lower than 3 μm) simultaneously in order to improve the laser cutting efficiency. Based on the PSO results, the optimal laser power gained at a laser power of 830 and 1080 W at cutting speed ranges from 2 to 4 m/min and maximum focal length ranges between 0.75 and 0.8 mm where the lowest amount of roughness was created. The optimum temperature ranges were between 370 and 419°C. At a laser power of 1000 W and speed of 4 m/min, the smooth cutting edge at minimum roughness was gained without any defects. Transmission of the focal point up to 1.5 mm below the top surface of the sheet improved the roughness of the cutting edge and the cut quality by producing the smooth surface without slags.

1.
L.
Wang
and
Y.
Rong
, “
Review on processing stability, weld defects, finite element analysis, and field assisted welding of ultra-high-power laser (≥10 kW) welding
,”
Int. J. Hydromechatronics
5
,
167
190
(
2022
).
2.
M. J. H.
Rawa
,
M. H. R.
Dehkordi
,
M. J.
Kholoud
,
N. H.
Abu-Hamdeh
, and
H.
Azimy
, “
Using the numerical simulation and artificial neural network (ANN) to evaluate temperature distribution in pulsed laser welding of different alloys
,”
Eng. Appl. Artif. Intell.
126
,
107025
(
2023
).
3.
N.
Erum
and
J.
Ahmad
, “
Structural, elastic and mechanical properties of cubic perovskite materials
,”
Arch. Adv. Eng. Sci.
2023,
1
6
(
2023
).
4.
S.
Stoyanov
,
D.
Petring
,
D.
Arntz-Schroeder
,
M.
Günder
,
A.
Gillner
, and
R.
Poprawe
, “
Investigation on the melt ejection and burr formation during laser fusion cutting of stainless steel
,”
J. Laser Appl.
32
,
022068
(
2020
).
5.
D.
Arntz
,
D.
Petring
,
U.
Jansen
, and
R.
Poprawe
, “
Advanced trim-cut technique to visualize melt flow dynamics inside laser cutting kerfs
,”
J. Laser Appl.
29
,
022213
(
2017
).
6.
Y.
Yongbin
,
S. A.
Bagherzadeh
,
H.
Azimy
,
M.
Akbari
, and
A.
Karimipour
, “
Comparison of the artificial neural network model prediction and the experimental results for cutting region temperature and surface roughness in laser cutting of AL6061T6 alloy
,”
Infrared Phys. Technol.
108
,
103364
(
2020
).
7.
M.
Sharifi
and
M.
Akbari
, “
Experimental investigation of the effect of process parameters on cutting region temperature and cutting edge quality in laser cutting of AL6061T6 alloy
,”
Optik
184
,
457
463
(
2019
).
8.
M.
Schleier
,
B.
Adelmann
,
C.
Esen
,
U.
Glatzel
, and
R.
Hellmann
, “
Development and evaluation of an image processing algorithm for monitoring fiber laser fusion cutting by a high-speed camera
,”
J. Laser Appl.
33
,
032004
(
2021
).
9.
J.
Pocorni
,
J.
Powell
,
J.
Frostevarg
, and
A. F. H.
Kaplan
, “
Investigation of the piercing process in laser cutting of stainless steel
,”
J. Laser Appl.
29
,
022201
(
2017
).
10.
M.
Azari
,
E.
Rasti
,
M. H. R.
Dehkordi
,
H.
Azimy
,
A.
Zarei
, and
S. A.
Bagherzadeh
, “
Investigation of temperature distribution and melt pool microstructure in laser fusion welding of inconel 625 superalloy
,”
J. Laser Appl.
33
,
022015
(
2021
).
11.
J.
Wang
,
Z.
Sun
,
L.
Gu
, and
H.
Azimy
, “
Investigating the effect of laser cutting parameters on the cut quality of inconel 625 using response surface method (RSM)
,”
Infrared Phys. Technol.
118
,
103866
(
2021
).
12.
P. A.
Hilton
,
D.
Lloyd
, and
J. R.
Tyrer
, “
Use of a diffractive optic for high power laser cutting
,”
J. Laser Appl.
28
,
012014
(
2016
).
13.
Y.
Peng
,
Milad Boroumand
Ghahnaviyeh
,
Mohammad Nazir
Ahmad
,
Ali
Abdollahi
,
Seyed Amin
Bagherzadeh
,
Hamidreza
Azimy
,
Amirhosein
Mosavi
, and
Aliakbar
Karimipour
, “
Analysis of the effect of roughness and concentration of Fe3O4/water nanofluid on the boiling heat transfer using the artificial neural network: An experimental and numerical study
,”
Int. J. Therm. Sci.
163
,
106863
(
2021
).
14.
X.
Dong
,
W.
Hao
,
J.
Liu
,
G.
Wang
, and
H.
Ren
, “
Effect of laser parameters on melting ratio and temperature distribution in dissimilar laser welding of brass and SS 308 using the artificial neural network model
,”
J. Laser Appl.
33
,
032003
(
2021
).
15.
G.
Norkey
,
K.
Pratap Singh
,
A.
Prajapati
, and
V.
Sharma
, “
Intelligent parameters optimization for laser cutting of highly reflective and thermally conductive materials using artificial neural network
,”
Mater. Today
46
,
4757
4764
(
2021
).
16.
C.
Sun
,
M. H. R.
Dehkordi
,
M. J.
Kholoud
,
H.
Azimy
, and
Z.
Li
, “
Systematic evaluation of pulsed laser parameters effect on temperature distribution in dissimilar laser welding: A numerical simulation and artificial neural network
,”
Opt. Laser Technol.
163
,
109407
(
2023
).
17.
N.
Luo
,
Hua
Yu
,
Zeqing
You
,
Yao
Li
,
Tunan
Zhou
,
Nan
Han
,
Chenxu
Liu
,
Zihan
Jiang
, and
Shaojie
Qiao
, “
Fuzzy logic and neural network-based risk assessment model for import and export enterprises: A review
,”
J. Data Sci. Intell. Syst.
1
(
1
), 2-11 (
2023
).
18.
Z.
Li
and
S.
Li
, “
Recursive recurrent neural network: A novel model for manipulator control with different levels of physical constraints
,”
CAAI Trans. Intell. Technol.
8
(
3
),
622
634
(
2023
).
19.
Q.
Zhang
,
Jingyu
Xiao
,
Chunwei
Tian
,
Jerry
Chun-Wei Lin
, and
Shichao
Zhang
, “
A robust deformed convolutional neural network (CNN) for image denoising
,”
CAAI Trans. Intell. Technol.
8
(
2
),
331
342
(
2023
).
20.
H.
Taherdoost
and
M.
Madanchian
, “
Analytic network process (ANP) method: A comprehensive review of applications, advantages, and limitations
,”
J. Data Sci. Intell. Syst.
1
(
1
), 12–18 (
2023
).
21.
N. T. K.
Chi
and
N.
Hoang Vu
, “
Investigating the customer trust in artificial intelligence: The role of anthropomorphism, empathy response and interaction
,”
CAAI Trans. Intell. Technol.
8
(
1
),
260
273
(
2023
).
22.
Z.
Chen
, “
Research on internet security situation awareness prediction technology based on improved RBF neural network algorithm
,”
J. Comput. Cogn. Eng.
1
(
3
),
103
108
(
2022
).
23.
M.
Asmael
and
A.
Memarzadeh
, “
A review on recent achievements and challenges in electrochemical machining of tungsten carbide
,”
Arch. Adv. Eng. Sci.
2023
,
1
23
(
2023
).
24.
Y.
Guo
,
Z.
Mustafaoglu
, and
D.
Koundal
, “
Spam detection using bidirectional transformers and machine learning classifier algorithms
,”
J. Comput. Cogn. Eng.
2
(
1
),
5
9
(
2022
).
25.
B. K.
Liu
and
W. Z.
Lu
, “
Surrogate models in machine learning for computational stochastic multi-scale modelling in composite materials design
,”
Int. J. Hydromechatronics
5
,
336
365
(
2022
).
26.
S.
Saminu
,
Guizhi
Xu
,
Shuai
Zhang
,
Isselmou Ab El
Kader
,
Hajara Abdulkarim
Aliyu
,
Adamu Halilu
Jabire
,
Yusuf Kola
Ahmed
, and
Mohammed Jajere
Adamu
, “
Applications of artificial intelligence in automatic detection of epileptic seizures using EEG signals: A review
,”
Artifi. Intell. Appl.
1
,
11
25
(
2023
).
27.
O.
Shekoofa
,
J.
Wang
, and
D.
Li
, “
Fabrication of n-type nanocrystalline silicon thin-film by magnetron sputtering and antimony induced crystallization
,”
Arch. Adv. Eng. Sci.
2023
1
11
(
2023
).
28.
T.
Tyagi
,
S.
Kumar
,
A. K.
Malik
, and
V.
Vashisth
, “
A novel neuro-optimization technique for inventory models in manufacturing sectors
,”
J. Comput. Cogn. Eng.
2
(
3
),
204
209
(
2022
).
29.
L.
Gang
,
G.
Huang
,
H.
Yuan
,
S.
Xia
, and
W.
Tan
, “
Analysis and optimisation of impact wear of diesel engine needle valve assembly
,”
Int. J. Hydromechatronics
5
,
80
91
(
2022
).
30.
N.
Roy
,
D.
Pramanik
, and
A. S.
Kuar
, “
Comparative study on quality characteristic of pulsed laser beam cutting of inconel 625 superalloy at different environment by sensitivity analysis
,”
Optik
232
,
166516
(
2021
).
31.
P. K.
Shrivastava
,
B.
Singh
, and
Y.
Shrivastava
, “
Prediction of optimal cut quality characteristic of inconel 718 sheet by genetic algorithm and particle swarm optimization
,”
J. Laser Appl.
31
,
022016
(
2019
).
32.
S.
Vagheesan
and
J.
Govindarajalu
, “
Hybrid neural network–particle swarm optimization algorithm and neural network–genetic algorithm for the optimization of quality characteristics during CO2 laser cutting of aluminium alloy
,”
J. Braz. Soc. Mech. Sci. Eng.
41
,
328
(
2019
).
33.
P.
Kumar Shrivastava
,
G.
Norkey
, and
A.
Kumar Pandey
, “
Optimization of process parameters during the laser cutting of inconel-718 sheet using regression based genetic algorithm
,”
Mater. Today Proc.
18
,
A17
A25
(
2019
).
34.
S.
Chaki
,
R. N.
Bathe
,
S.
Ghosal
, and
G.
Padmanabham
, “
Multi-objective optimisation of pulsed Nd:YAG laser cutting process using integrated ANN–NSGAII model
,”
J. Intell. Manuf.
29
,
175
190
(
2018
).
35.
N.
Roy
,
A.
Kuar
,
S.
Mitra
, and
A.
Das
, “
Sensitivity analysis of process parameters in submerged laser beam cutting on Inconel 625 superalloy
,” in
International Conference on Precision, Meso, Micro and Nano Engineering
, India (
2017
), Vol.
10
, pp.
247
250
.
36.
N.
Roy
,
A.
Kuar
,
S.
Mitra
, and
A.
Das
, “
Submerged pulsed Nd: YAG laser beam cutting of inconel 625 superalloy: Experimental investigation
,”
Lasers Eng.
35
,
151
171
(
2016
).
37.
J.
Wei
,
Y.
Ye
,
Z.
Sun
,
L.
Liu
, and
G.
Zou
, “
Control of the kerf size and microstructure in inconel 738 superalloy by femtosecond laser beam cutting
,”
Appl. Surf. Sci.
370
,
364
372
(
2016
).
38.
F.
Jafarian
and
A.
Barghak
, “Experimental investigations in order to evaluate the kerf and surface roughness in the laser cutting process of Inconel 718 superalloy and process optimization,”
Modares Mech. Eng.
15
(
13
), 68–72 (
2016
).
39.
H.
Tebassi
,
M. A.
Yallese
,
I.
Meddour
,
F.
Girardin
, and
T.
Mabrouki
, “
On the modeling of surface roughness and cutting force when turning of inconel 718 using artificial neural network and response surface methodology: Accuracy and benefit
,”
Periodica Polytech Mech. Eng.
61
,
1
11
(
2017
).
40.
Y.
Nukman
,
M.
Hassan
, and
M.
Harizam
, “
Optimization of prediction error in CO2 laser cutting process by taguchi artificial neural network hybrid with genetic algorithm
,”
Appl. Math. Inf. Sci.
7
,
363
370
(
2013
).
41.
M.
Grepl
,
J.
Petru
,
R.
Cep
,
L.
Petrkovska
, and
T.
Zlamal
, “
The effect of process parameters on result quality of cut during laser cutting of material
,” in
Proceedings of the 23th DAAAM International Symposium, ISSN
, Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium, Vienna, Austria (
2012
), Vol. 23041382, pp. 1035–1038.
42.
M.
Madić
and
M.
Radovanović
, “
Comparative modeling of CO2 laser cutting using multiple regression analysis and artificial neural network
,”
Int. J. Physic. Sci.
7
(
16
),
2422
2430
(
2012
).
43.
C.-B.
Yang
,
C.-S.
Deng
, and
H.-L.
Chiang
, “
Combining the taguchi method with artificial neural network to construct a prediction model of a CO2 laser cutting experiment
,”
Int. J. Adv. Manuf. Technol.
59
,
1103
1111
(
2012
).
44.
M.-J.
Tsai
,
C.-H.
Li
, and
C.-C.
Chen
, “
Optimal laser-cutting parameters for QFN packages by utilizing artificial neural networks and genetic algorithm
,”
J. Mater. Proc. Technol.
208
,
270
283
(
2008
).
45.
D.
Pramanik
,
N.
Roy
,
A. S.
Kuar
,
S.
Sarkar
, and
S.
Mitra
, “
Experimental investigation of sawing approach of low power fiber laser cutting of titanium alloy using particle swarm optimization technique
,”
Opt. Laser Technol.
147
,
107613
(
2022
).
46.
S.
Chaki
,
D.
Bose
, and
R. N.
Bathe
, “
Multi-objective optimization of pulsed Nd: YAG laser cutting process using entropy-based ANN-PSO model
,”
Lasers Manuf. Mater. Proc.
7
,
88
110
(
2020
).
47.
P. K.
Shrivastava
,
B.
Singh
, and
Y.
Shrivastava
, “
Prediction of optimal cut quality characteristic of inconel 718 sheet by genetic algorithm and particle swarm optimization
,”
J. Laser Appl.
31
, 022016 (
2019
).
You do not currently have access to this content.