This study investigated the effects of laser beam intensity distribution on the reduction of dross height in fiber laser cutting of a steel plate with 3.2 mm thickness. A twin-spot beam was produced by splitting a single Gaussian beam into two beams using a special axicon lens, and these beams were set in the scanning direction for cutting experiments. The power ratio of two beams (R:F = Rear power:Front power) was varied to discuss the intensity balance for the effective reduction of dross. After cutting experiments, ray tracing analysis was conducted using an optical analysis to calculate the absorbed power density distributions in the kerf. A smaller dross height of 18 μm can be achieved at a power ratio of R:F = 8:2, and its value is lower than that by a single Gaussian beam. At a power ratio of R:F = 8:2, the front beam of lower power is irradiated at the upper part of the workpiece, and the rear beam of higher power is absorbed at the lower part of the workpiece. Thus, effective heat input to the lower part of the workpiece can contribute to a reduction of the dross height. Variation of power ratio in the rear and the front beams is effective in controlling the cutting front shape, and the uniformity of absorbed power in the thickness direction can be improved by setting the rear beam of about four times higher power to the front beam of lower power to obtain a smaller dross height in the case of a 3.2 mm steel plate.

1.
A.
Mahrle
,
M.
Lütke
, and
E.
Beyer
, “
Fibre laser cutting beam absorption characteristics and gas-free remote cutting
,”
J. Mech. Eng. Sci.
224
,
1007
1018
(
2010
).
2.
S.
Stelzera
,
A.
Mahrle
,
A.
Wetzig
, and
E.
Beyer
, “
Experimental investigations on fusion cutting stainless steel with fiber and CO2 laser beams
,”
Phys. Procedia
41
,
399
404
(
2013
).
3.
J. K.
Pocorni
,
D.
Petring
,
J.
Powell
,
E.
Deichsel
, and
A. F. H.
Kaplan
, “
Difference in cutting efficiency between CO2 and fiber lasers when cutting mild and stainless steels
,” in
Proceedings of 33rd International Congress on Application of Laser & Electro-Optics
(Laser Institute of America, Orlando,
2014
), p.
905
.
4.
A.
Yagi
,
S.
Kadonaga
,
Y.
Okamoto
,
H.
Ishiguro
,
R.
Ito
,
A.
Sugiyama
,
H.
Okawa
,
R.
Fujita
, and
A.
Okada
, “
Fundamental study on reduction of dross in fiber laser cutting of steel by shifting nozzle axis
,”
J. Laser Appl.
33
,
012022
(
2021
).
5.
M.
Vicanek
and
G.
Simon
, “
Momentum and heat transfer of an inert gas jet to the melt in laser cutting
,”
J. Phys. D: Appl. Phys.
20
,
1191
1196
(
1987
).
6.
S.
Stoyanov
,
D.
Petring
,
D.
Arntz-Schroeder
,
M.
Günder
,
A.
Gillner
, and
R.
Poprawe
, “
Investigation on the melt ejection and burr formation during laser fusion cutting of stainless steel
,”
J. Laser Appl.
32
,
022068
(
2020
).
7.
J.
Chen
,
L.
Lu
,
L.
Li
, and
H.
Zhao
, “
In international federation for information processing (IFIP)
,” in
Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management
, edited by
K.
Wang
,
G.
Kovacs
,
M.
Wozny
, and
M.
Fang
(
Springer
,
Boston
,
2006
), Vol. 207, pp.
519
524
.
8.
D.
Teixidor
,
J.
Ciurana
, and
C. A.
Rodriguez
, “
Dross formation and process parameters analysis of fibre laser cutting of stainless steel thin sheets
,”
Int. J. Adv. Manuf. Technol.
71
,
1611
1621
(
2014
).
9.
C.
Wandera
and
V.
Kujanpaa
, “
Characterization of the melt removal rate in laser cutting of thick-section stainless steel
,”
J. Laser Appl.
22
,
62
70
(
2010
).
10.
C.
Wandera
and
V.
Kujanpää
, “
Optimization of parameters for fibre laser cutting of a 10 mm stainless steel plate, 2011
,”
Proc. Inst. Mech. Eng. Pt. B J. Eng. Manufact.
225
,
641
649
(
2011
).
11.
T.
Pinder
and
C.
Goppold
, “
Understanding the changed mechanisms of laser beam fusion cutting by applying beam oscillation, based on thermographic analysis
,”
Appl. Sci.
11
,
921
947
(
2021
).
12.
F. O.
Olsen
,
K. S.
Hansen
, and
J. S.
Nielsen
, “
Multibeam fiber laser cutting
,”
J. Laser Appl.
21
,
133
138
(
2009
).
13.
J.
Kaakkunen
,
P.
Laakso
, and
V.
Kujanpää
, “
Adaptive multibeam laser cutting of thin steel sheets with fiber laser using spatial light modulator
,”
J. Laser Appl.
26
,
032008
(
2014
).
14.
M.
Kardan
,
N.
Levichev
, and
J. R.
Duflou
, “
Experimental and numerical investigation of thick plate laser cutting using dynamic beam shaping
,”
Procedia CIRP
111
,
740
745
(
2022
).
15.
N.
Kai
,
Y.
Okamoto
,
A.
Okada
,
H.
Ishiguro
,
R.
Ito
,
A.
Sugiyama
,
H.
Okawa
, and
R.
Fujita
, “
Investigation on reduction of dross height by analyzing beam intensity distribution in fiber laser cutting
,”
J. Laser Appl.
33
,
042008
(
2021
).
16.
H.
Pang
and
T.
Haecker
, “Laser cutting with annular intensity distribution,”
Procedia CIRP
94
,
481
486
(
2020
).
17.
K.
Morimoto
,
A.
Yagi
,
N.
Kai
,
Y.
Okamoto
,
H.
Ishiguro
,
R.
Ito
,
A.
Sugiyama
,
H.
Okawa
, and
A.
Okada
, “
Fiber laser cutting of steel materials with twin spot beam-twin spot setting in kerf width direction
,”
J. Laser Appl.
34
,
042009
(
2022
).
18.
E.
Hecht
,
Optics
,
4th ed.
(
Pearson
, San Francisco,
2002
), p.
101
.
19.
A.
Mahrle
and
E.
Beyer
, “
Theoretical aspects of fibre laser cutting
,”
J. Phys. D: Appl. Phys.
42
,
175507
(
2009
).
20.
S.
Gao
,
K.
Jiao
,
J.
Zhang
,
X.
Fan
,
Z.
Liu
, and
A.
Zheng
, “
Review on the viscosity of iron-based melts in metallurgical process
,”
ISIJ Int.
62
,
2172
2182
(
2022
).
21.
G. C.
Rodrigues
,
V.
Vorkov
, and
J. R.
Duflou
, “
Optimal laser beam configurations for laser cutting of metal sheets
,”
Procedia CIRP
74
,
714
718
(
2018
).
22.
G. C.
Rodrigues
and
J. R.
Duflou
, “
Opportunities in laser cutting with direct diode laser configurations
,”
CIRP Ann. Manuf. Technol.
66
,
245
248
(
2017
).
23.
J.
Hauptmann
,
P.
Herwig
,
A.
Wetzig
,
D.
Dittrich
,
E.
Beyer
,
U.
Hofmann
, and
F.
Senger
, “
System technology for dynamic beam shaping
,” in
Proceedings of 34th International Congress on Applications of Lasers & Electro-Optics ICALEO 2015
(Laser Institute of America, Orlando,
2015
) pp.
930
939
.
24.
N.
Levichev
,
P.
Herwig
,
A.
Wetzig
, and
J. R.
Duflou
, “
Towards robust dynamic beam shaping for laser cutting applications
,”
Procedia CIRP
111
,
746
749
(
2022
).
You do not currently have access to this content.