This study examines the impact of wobble movement on a laser beam’s behavior while moving over an AISI 316L stainless steel sample of 1.2 mm thickness during welding. The laser beam oscillatory movement is superimposed on linear movement, using a 400 W fiber laser installed on an experimental bench equipped with a scanner and worktable. Mathematical modeling estimates instantaneous beam speed values, predicting thermal influence on weld bead aspects. Microwelding experiments use autogenous processing with lateral beam oscillation. Two forms of overlapping transverse wobble are tested: one with a circular path and the other describing the mathematical symbol “infinity.” Correlations are evidenced between the input parameters and results obtained in the microwelds, including penetration and width of the beads. Results show that the frequency of movement in a circle and in “infinity” for frequencies from 200 to 400 Hz has no significant influence on the result. Increasing the amplitude of the wobble movement from 0.5 to 2 mm significantly influences the width and depth of the strands generated. The wobble technique is effective in preventing discontinuities in the process, such as porosities. A bead obtained with 300 W, 50 mm/s, 0.5 mm overlapping wobble movement, and 300 Hz circular rotation frequency showed the highest relationship between width and depth.

1.
V. A.
Ventrella
,
J. R.
Berretta
, and
W.
De Rossi
, “
Pulsed Nd:YAG laser welding of Ni-alloy Hastelloy C-276 foils
,”
Phys. Procedia
39
,
569
576
(
2012
).
2.
J.
Svenungsson
,
I.
Choquet
, and
A. F. H.
Kaplan
, “
Laser welding process—A review of keyhole welding modelling
,”
Phys. Procedia
78
,
182
191
(
2015
).
3.
V. V.
Semak
,
G. A.
Knorovsky
, and
D. O.
MacCallum
, “
On the possibility of microwelding with laser beams
,”
J. Phys. D: Appl. Phys.
36
,
2170
2174
(
2003
).
4.
M.
Idris
,
S.
Ismail
,
Y.
Okamoto
,
A.
Okada
, and
Y.
Uno
, “
Experimental investigation on micro-welding of thin stainless steel sheet by fiber laser
,”
Am. J. Eng. Appl. Sci.
4
,
314
320
(
2011
).
5.
C.
Mittelstädt
,
T.
Seefeld
,
P.
Woizeschke
, and
F.
Vollertsen
, “
Laser welding of hidden T-joints with lateral beam oscillation
,”
Procedia CIRP
74
,
456
460
(
2018
).
6.
Z.
Wang
,
J. P.
Oliveira
,
Z.
Zeng
,
X.
Bu
,
B.
Peng
, and
X.
Shao
, “
Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties
,”
Opt. Laser Technol.
111
,
58
65
(
2019
).
7.
H. S.
Dewi
and
J.
Volpp
, “
Impact of laser beam oscillation strategies on surface treatment of microalloyed steel
,”
J. Laser Appl.
32
,
042006
(
2020
).
8.
G.
Chen
,
B.
Wang
,
S.
Mao
,
P.
Zhong
, and
J.
He
, “
Research on the ‘∞’-shaped laser scanning welding process for aluminum alloy
,”
Opt. Laser Technol.
115
,
32
41
(
2019
).
9.
Y.
Yin
,
C.
Zhang
, and
T.
Zhu
, “
Penetration depth prediction of infinity shaped laser scanning welding based on Latin hypercube sampling and the neuroevolution of augmenting topologies
,”
Materials
14
,
5984
(
2021
).
10.
S.
Börner
,
D.
Dittrich
,
P.
Mohlau
,
C.
Leyens
,
F.
García-Moreno
,
P. H.
Kamm
,
T. R.
Neu
, and
C. M.
Schlepütz
, “
In situ observation with x-ray for tentative exploration of laser beam welding processes for aluminum-based alloys
,”
J. Laser Appl.
33
,
012026
(
2021
).
11.
A.
Jayanthi
and
Ksuresh
Kumar
, “
Laser beams a novel tool for welding: A review
,”
IOSR J. Appl. Phys.
8
,
8
26
(
2016
).
12.
L. H.
Shah
,
F.
Khodabakhshi
, and
A.
Gerlich
, “
Effect of beam wobbling on laser welding of aluminum and magnesium alloy with nickel interlayer
,”
J. Manuf. Process.
37
,
212
219
(
2019
).
13.
C.
Yuce
, “
The effect of laser beam wobbling mode on weld bead geometry of tailor welded blanks
,”
Acad. Perspect. Procedia
3
,
282
290
(
2020
).
14.
IPG Photonics,
“Wobble heads—The benefits of wobble welding compared to conventional welding methods,” Wobble Process Heads Brochure, 6, 2019.
15.
M.
Köhler
,
T.
Tóth
,
A.
Kreybohm
,
J.
Hensel
, and
K.
Dilger
, “
Effects of reduced ambient pressure and beam oscillation on gap bridging ability during solid-state laser beam welding
,”
J. Manuf. Mater. Process.
4
,
40
(
2020
).
16.
A.
Müller
,
S. F.
Goecke
,
P.
Sievi
,
F.
Albert
, and
M.
Rethmeier
, “
Laser beam oscillation strategies for fillet welds in lap joints
,”
Phys. Procedia
56
,
458
466
(
2014
).
17.
H.
Ramiarison
,
N.
Barka
,
C.
Pilcher
,
E.
Stiles
,
G.
Larrimore
, and
S.
Amira
, “
Weldability improvement by wobbling technique in high power density laser welding of two aluminum alloys: Al-5052 and Al-6061
,”
J. Laser Appl.
33
,
032015
(
2021
).
18.
C.
Hagenlocher
,
M.
Sommer
,
F.
Fetzer
,
R.
Weber
, and
T.
Graf
, “
Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum
,”
Mater. Des.
160
,
1178
1185
(
2018
).
19.
J.
Li
,
Y.
Liu
,
Z.
Zhen
,
K.
Kang
,
P.
Jin
,
Y.
Liu
, and
Q.
Sun
, “
Analysis and improvement of laser wire filling welding process stability with beam wobble
,”
Opt. Laser Technol.
134
,
106594
(
2021
).
20.
Z.
Sun
and
J. C.
Ion
, “
Laser welding of dissimilar metal combinations
,”
J. Mater. Sci.
30
,
4205
4214
(
1995
).
21.
G. V.
Moskvitin
,
A. N.
Polyakov
, and
E. M.
Birger
, “
Application of laser welding methods in industrial production
,”
Weld. Int.
27
,
572
580
(
2013
).
22.
T. A.
Mai
and
A. C.
Spowage
, “
Characterisation of dissimilar joints in laser welding of steel-kovar, copper-steel and copper-aluminium
,”
Mater. Sci. Eng. A
374
,
224
233
(
2004
).
23.
C. C. de.
Oliveira
, “
Efeito da geometria de movimentação sobreposta à trajetória de deslocamento linear do feixe LASER sobre a superfície de uma amostra de aço inoxidável AISI 316L para aplicações em microssoldagem
,”
Masters dissertation
,
Universidade Federal de Santa Catarina
,
2019
.
24.
R.
Resnick
,
D.
Halliday
, and
K. S.
Krane
,
Physics
(
Wiley
,
New York
,
2001
), Vol. 1, p.
624
.
25.
E.
Brandão
,
Acústica de Salas
(
Projeto e Modelagem
,
Blucher
,
2018
), p.
654
.
26.
F.
Fetzer
,
M.
Sommer
,
R.
Weber
,
J. P.
Weberpals
, and
T.
Graf
, “
Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi
,”
Opt. Lasers Eng.
108
,
68
77
(
2018
).
27.
M.
Miyagi
,
X.
Zhang
,
Y.
Kawahito
, and
S.
Katayama
, “
Surface void suppression for pure copper by high-speed laser scanner welding
,”
J. Mater. Process. Technol.
240
,
52
59
(
2017
).
28.
M.
Schweier
,
J. F.
Heins
,
M. W.
Haubold
, and
M. F.
Zaeh
, “
Spatter formation in laser welding with beam oscillation
,”
Phys. Procedia
41
,
20
30
(
2013
).
29.
X.
Chen
et al, “
Numerical investigation of asymmetric weld fusion geometry in laser welding of aluminium alloy with beam oscillation
,”
Sci. Technol. Weld. Joining
27
,
595
605
(
2022
).
You do not currently have access to this content.