Oblique laser shock processing (OLSP) can provide a new solution for improving the mechanical properties of complex structural elements. In this paper, a spatial distribution model of OLSP shock wave pressure is established and validated to study the residual stress (RS) field and surface morphology of titanium alloy TC6 treated by OLSP using the finite element method. The effects of the incident angle, overlapping rate, and scanning pattern on the RS field and surface morphology were investigated. The OLSP results indicate that the overlapping rate should be at least 50%. The RS field and surface morphology obtained with the interval scanning pattern are more uniform compared to snake and spiral. With a 50% overlapping rate and interval scanning pattern, the surface roughness was found to be 0.16, and the surface residual compressive stress fluctuation amplitude was reduced by 40.07%. The results provide a theoretical basis for complex structures of LSP.

1.
S.
Chowdhury
and
N.
Arunachalam
, “
Surface functionalization of additively manufactured titanium alloy for orthopaedic implant applications
,”
J. Manuf. Process.
102
,
387
405
(
2023
).
2.
C.
Deng
,
M. L.
Jiang
,
D.
Wang
,
Y. Q.
Yang
,
V.
Trofimov
,
L. X.
Hu
, and
C. J.
Han
, “
Microstructure and superior corrosion resistance of an in-situ synthesized NiTi-based intermetallic coating via laser melting deposition
,”
Nanomaterials
12
,
705
718
(
2022
).
3.
J. E.
Masse
and
G.
Barreau
, “
Laser generation of stress waves in metal
,”
Surf. Coat. Technol.
70
,
231
234
(
1995
).
4.
Z.
Zhang
,
Q.
Nian
,
C. C.
Doumanidis
, and
Y.
Liao
, “
First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing
,”
J. Appl. Phys.
123
,
054901
(
2018
).
5.
H.
Chang
, “
Nanosecond laser ablation impulse coupling characteristics and its application in space debris removal
,”
thesis
(
Equipment Academy
,
Beijing
,
2014
).
6.
W.
Zhang
,
Z.
Wei
,
Y. B.
Wang
, and
G. Y.
Jin
, “
The process of a laser-supported combustion wave induced by millisecond pulsed laser on aluminum alloy
,”
Chin. Phys. Lett.
33
,
014205
(
2016
).
7.
D.
Karthik
,
J. C.
Jiang
,
Y. X.
Hu
, and
Z. Q.
Yao
, “
Effect of multiple laser shock peening on microstructure, crystallographic texture and pitting corrosion of aluminum-lithium alloy 2060-T8
,”
Surf. Coat. Technol.
421
,
127354
(
2021
).
8.
X. F.
Nie
,
W. F.
He
,
S. L.
Zang
,
X. D.
Wang
, and
Y. Q.
Li
, “
Experimental study on improving high-cycle fatigue performance of TC11 titanium alloy by laser shock peening
,”
Chin. J. Lasers
40
,
803006
(
2013
).
9.
H.
Wang
,
C. Y.
Ning
,
Y. H.
Huang
,
Z. Y.
Cao
,
X. X.
Chen
, and
W. W.
Zhang
, “
Improvement of abrasion resistance in artificial seawater and corrosion resistance in NaCl solution of 7075 aluminum alloy processed by laser shock peening
,”
Opt. Lasers Eng.
90
,
179
185
(
2017
).
10.
M. J.
Leap
,
J.
Rankin
,
J.
Harrison
,
L.
Hackel
,
J.
Nemeth
, and
J.
Candela
, “
Effects of laser peening on fatigue life in an arrestment hook shank application for naval aircraft
,” in
2011 IEEE Conference on Prognostics and Health Management
,
Denver, CO
,
20–23 June 2011
(
IEEE
, New York,
2011
), pp.
1
11
.
11.
W.
Song
,
S. K.
Zou
, and
Z. W.
Cao
, “
Application of laser peening on weld structure nuclear industry
,”
Aeronaut. Manuf. Technol.
14
,
89
91
(
2014
).
12.
Q. F.
Lu
,
Q.
Su
,
F.
Wang
,
C. F.
Zhang
,
Y. F.
Lu
,
M.
Nastasi
, and
B.
Cui
, “
Influence of laser shock peening on irradiation defects in austenitic stainless steels
,”
J. Nucl. Mater.
489
,
203
210
(
2017
).
13.
R.
Zhu
,
Y. K.
Zhang
,
G. F.
Sun
,
P.
Li
,
S. B.
Zhang
, and
Z. H.
Ni
, “
Numerical simulation of residual stress fields in three-dimensional flattened laser shocking of 2024 aluminum alloy
,”
Chin. J. Lasers
44
,
0802007
(
2017
).
14.
X. F.
Nie
,
Y. H.
Li
,
W. F.
He
,
S. H.
Luo
, and
L. C.
Zhou
, “
Research progress and prospect of laser shock peening technology in aero-engine components
,”
J. Mech. Eng.
57
,
293
305
(
2021
).
15.
X.
Li
,
W. F.
He
,
S. H.
Luo
,
X. F.
Nie
,
L.
Tian
,
X. T.
Feng
, and
R. K.
Li
, “
Simulation and experimental study on residual stress distribution in titanium alloy treated by laser shock peening with flat-top and Gaussian laser beams
,”
Materials
12
,
1343
1355
(
2019
).
16.
W.
Braisted
and
R.
Brockman
, “
Finite element simulation of laser shock peening
,”
Int. J. Fatigue
21
,
719
724
(
1999
).
17.
Y. X.
Hu
and
R. V.
Grandhi
, “
Efficient numerical prediction of residual stress and deformation for large-scale laser shock processing using the eigenstrain methodology
,”
Surf. Coat. Technol.
206
,
3374
3385
(
2012
).
18.
Y. X.
Hu
,
Z. Q.
Yao
, and
J.
Hu
, “
3-D FEM simulation of laser shock processing
,”
Surf. Coat. Technol.
201
,
1426
1435
(
2006
).
19.
Y. F.
Xiang
,
R. L.
Mei
,
S. P.
Wang
,
F.
Azad
,
L. Z.
Zhao
, and
S. C.
Su
, “
Numerical investigation of the effect of laser shock peening parameters on the residual stress and deformation response of 7075 aluminum alloy
,”
Optik
243
,
167446
(
2021
).
20.
Y. K.
Zhang
,
L. H.
Zhang
,
J. Z.
Zhou
,
A. X.
Feng
,
L. F.
Zhang
,
T.
Ge
, and
X. D.
Ren
, “
Oblique angle laser shock experiment and theoretic analyse
,”
Chin. J. Lasers
32
,
1437
1440
(
2005
).
21.
Y. F.
Jiang
,
F.
Wang
,
Y. Y.
Zhu
,
Y. Y.
Gu
, and
Y. L.
Lai
, “
Study on forming characteristics of metal sheet by laser shock in oblique angle
,”
Key Eng. Mater.
431 432
,
429
433
(
2010
).
22.
L. H.
Zhang
,
L. J.
Sun
, and
X. H.
Ma
, “
Research on the deformation characteristic of the sheet by oblique angle laser shock
,”
Laser Phys.
23
,
036001
(
2013
).
23.
H. C.
Qiao
,
B. Y.
Sun
,
J. B.
Zhao
,
Y.
Lu
, and
Z. H.
Cao
, “
Numerical modeling of residual stress field for linear polarized laser oblique shock peening
,”
Optik
186
,
52
62
(
2019
).
24.
C. H.
Lin
,
L. W.
Yu
,
J. L.
Zeng
,
H. B.
Wu
,
X. J.
Guo
,
J. X.
Liu
, and
Y. K.
Zhang
, “
Experimental study on FGH95 superalloy turbine disk joint material by oblique laser shock processing
,”
Metals
11
,
1770
1785
(
2021
).
25.
X. M.
Qu
,
Y. K.
Zhang
, and
J.
Liu
, “
Numerical simulation on residual stress field of flat-topped laser oblique shocking of Ni-based alloy GH4169
,”
Adv. Mater. Sci. Eng.
2020
,
8824824
.
26.
B. Y.
Sun
,
J. B.
Zhao
,
H. C.
Qiao
, and
Y.
Lu
, “
Effects of square spot size and beam quality on residual stress of 7050 aluminum alloy by laser shock peening
,”
Mater. Chem. Phys.
284
,
126023
(
2022
).
27.
R.
Zhu
, “
Study on strengthening and deformation of thin-walled components under flattened beam multiple laser shock processing
,”
thesis
(
Southeast University
,
Jiangsu
,
2019
).
28.
R.
Fabbro
,
J.
Fournier
,
P.
Ballard
,
D.
Devaux
, and
J.
Virmont
, “
Physical study of laser-produced plasma in confined geometry
,”
J. Appl. Phys.
68
,
775
784
(
1990
).
29.
C.
Deng
and
P.
Molian
, “
Laser shock wave treatment of polycrystalline diamond tool and nanodiamond powder compact
,”
Int. J. Adv. Manuf. Technol.
63
,
259
267
(
2012
).
30.
X. Q.
Zhang
,
J. P.
She
,
S. Z.
Li
,
S. W.
Duan
,
Y.
Zhou
,
X. L.
Yu
,
R.
Zheng
, and
B.
Zhang
, “
Simulation on deforming progress and stress evolution during laser shock forming with finite element method
,”
J. Mater. Process. Tech.
220
,
27
35
(
2015
).
31.
C.
Deng
,
M.
Liu
, and
P.
Molian
, “
Nanodiamond powder compaction via laser shockwaves: Experiments and finite element analysis
,”
Powder Technol.
239
,
36
46
(
2013
).
32.
R.
Zhu
,
Y. K.
Zhang
, and
C.
Zhang
, “
Surface residual stress, micro-hardness and geometry of TC6 titanium alloy thin-wall parts processed by multiple oblique laser shock peening
,”
Mater. Res. Express
7
,
106526
(
2020
).
33.
Y. X.
Hu
and
Z. Q.
Yao
, “
FEM simulation of residual stresses induced by laser shock with overlapping laser spots
,”
Acta Metall. Sin. (Engl. Lett.)
21
,
125
132
(
2008
).
34.
C. H.
Lin
, “
Mechanism research on aero-engine turbine disk joint material by oblique laser shock processing
,”
thesis
(
Guangdong University of Technology
,
Guangdong
,
2021
).
35.
S.
Adu-Gyamfi
,
X. D.
Ren
,
E. A.
Larson
,
Y. P.
Ren
, and
Z. P.
Tong
, “
The effects of laser shock peening scanning patterns on residual stress distribution and fatigue life of AA2024 aluminium alloy
,”
Opt. Laser Technol.
108
,
177
185
(
2018
).
36.
C.
Correa
,
D.
Peral
,
J. A.
Porro
,
M.
Díaz
,
L.
Ruiz de Lara
,
A.
García-Beltrán
, and
J. L.
Ocaña
, “
Random-type scanning patterns in laser shock peening without absorbing coating in 2024-T351 Al alloy: A solution to reduce residual stress anisotropy
,”
Opt. Laser Technol.
73
,
179
187
(
2015
).
37.
See supplementary material online for the finite element analysis calculation procedure of OLSP, discretized formula for calculating surface roughness, and residual stress and surface deformation nephograms for different overlapping rates and scanning patterns.

Supplementary Material

You do not currently have access to this content.