In laser cutting, the fundamental role of the gas flow for melt removal and kerf formation is generally accepted. Beyond this vague understanding, however, the underlying physical mechanisms are not yet fully understood. In particular, detailed data concerning the momentum and heat transfer between the gas and melt have seldom been reported. This study addresses the local interactions between the cutting gas and kerf surface (melt film surface) in a fundamental way based on a combined experimental, theoretical, and numerical approach. Typical solid-state laser cut edges are analyzed considering the characteristic surface structures and the basic influences of the gas flow on the global and local melt movement. Here, apparent structures in the micrometer range indicate the effect of vortical gas structures close to the wall. Theoretical investigation of the gas boundary layer is conducted by semiempirical equations and the transfer of basic results from the boundary layer theory. It is shown that the boundary layer is in transition between the laminar and turbulent flow, and local flow separations and shock-boundary layer interactions primarily induce spatially periodic and quasistationary instability modes. An improved numerical model of the cutting gas flow confirms the theoretical results and exhibits good agreement with experimental cut edges, reproducing relevant instability modes and quantifying the local momentum and heat transfer distributions between the gas and melt. With the knowledge gained about the underlying physical mechanisms, promising approaches for improvements of the fusion cutting performance are proposed.

1.
J.
Powell
,
CO2 Laser Cutting
, 2nd ed. (
Springer
,
Berlin
,
1998
).
2.
H.
Hügel
and
T.
Graf
,
Laser in der Fertigung: Strahlquellen, Systeme, Fertigungsverfahren
, 2nd ed. (
Vieweg + Teubner
,
Wiesbaden
,
2009
).
3.
A.
Mahrle
and
E.
Beyer
, “
Theoretical aspects of fibre laser cutting
,”
J. Phys. D: Appl. Phys.
42
,
175507
(
2009
).
4.
C.
Wandera
,
A.
Salminen
,
F. O.
Olsen
, and
V.
Kujanpää
, “
Cutting of stainless steel with fiber and disk laser: Paper 404
,” in
25th International Congress on Applications of Lasers & Elektro-Optics: ICALEO 2006
,
Scottsdale
, AZ, 30 October–2 November 2006 (LIA, Orlando, FL,
2006
), p.
211
.
5.
L. D.
Scintilla
,
L.
Tricarico
,
A.
Mahrle
,
A.
Wetzig
,
T.
Himmer
, and
E.
Beyer
, “
A comparative study on fusion cutting with disk and CO2 lasers: Paper 704
,” in
29th International Congress on Applications of Lasers & Electro-Optics: Laser Materials Processing Conference
,
Anaheim, CA
, 26–30 September 2010 (LIA, Orlando, FL,
2010
), p.
249
.
6.
K.
Hirano
and
R.
Fabbro
, “
A comparative experimental study of laser fusion cutting of steel with 1müm and 10 müm laser wavelengths
,” in
International Congress on Applications of Lasers & Electro-Optics: Laser Materials Processing Conference
,
Miami, FL
, 6–10 October 2013 (LIA, Orlando, FL
2013
), pp.
119
124
.
7.
S.
Stelzer
,
A.
Mahrle
,
A.
Wetzig
, and
E.
Beyer
, “
Experimental investigations on fusion cutting stainless steel with fiber and CO2 laser beams
,”
Phys. Proc.
41
,
399
404
(
2013
).
8.
A.
Mahrle
,
T.
Wanski
,
A. T.
Zeuner
,
P.
Herwig
, and
M.
Zimmermann
, “
Investigations on dross formation susceptibility in laser fusion cutting of different stainless steel compositions with emphasis on minor element effects
,”
J. Laser Appl.
35
,
032001
(
2023
).
9.
K.
Hirano
and
R.
Fabbro
, “
Experimental observation of hydrodynamics of melt layer and striation generation during laser cutting of steel
,”
Phys. Proc.
12
,
555
564
(
2011
).
10.
G. V.
Ermolaev
,
P. V.
Yudin
,
F.
Briand
,
A. V.
Zaitsev
, and
O. B.
Kovalev
, “
Fundamental study of CO2- and fiber laser cutting of steel plates with high speed visualization technique
,”
J. Laser Appl.
26
,
042004
(
2014
).
11.
D.
Arntz
,
D.
Petring
,
U.
Jansen
, and
R.
Poprawe
, “
Advanced trim-cut technique to visualize melt flow dynamics inside laser cutting kerfs
,”
J. Laser Appl.
29
,
22213
(
2017
).
12.
M.
Borkmann
,
A.
Mahrle
, and
E.
Beyer
, “
Study of correlation between edge roughness and gas flow characteristics in laser beam fusion cutting
,”
Proc. CIRP
74
,
421
424
(
2018
).
13.
J.
Fieret
,
M.
Terry
, and
B.
Ward
, “Overview of flow dynamics in gas-assisted laser cutting: Paper 801,”
Proc. SPIE
801
, 243–250 (
1987
).
14.
M.
Vicanek
,
G.
Simon
,
H. M.
Urbassek
, and
I.
Decker
, “
Hydrodynamical instability of melt flow in laser cutting
,”
J. Phys. D: Appl. Phys.
20
,
140
145
(
1987
).
15.
H.
Zefferer
,
D.
Petring
, and
E.
Beyer
, “
Investigations of the gas flow in laser beam cutting: Untersuchung der Gasströmung beim Laserstrahlschneiden
,” in
Deutscher Verband für Schweißtechnik e.V. -DVS-, Düsseldorf: 3. Internationale Konferenz Stahltechnik ´91
, Karlsruhe, Germany, 13–14 March 1991 (
DVS-Verlag
,
Düsseldorf
,
1991
), p.
1991
.
16.
S.
Aggoune
,
C.
Abid
, and
E. H.
Amara
, “
Effect of laser cutting parameters on the heat affected zone and on the boundary layer in steel laser processing
,”
Defect Diffus. Forum
399
,
154
163
(
2020
).
17.
M.
Borkmann
,
A.
Mahrle
,
E.
Beyer
, and
C.
Leyens
, “
Laser fusion cutting: Evaluation of gas boundary layer flow state, momentum and heat transfer
,”
Mater. Res. Express
8
,
036513
(
2021
).
18.
A.
Otto
and
M.
Schmidt
, “
Towards a universal numerical simulation model for laser material processing
,”
Phys. Proc.
5
,
35
46
(
2010
).
19.
S.
Aggoune
,
C.
Abid
, and
E. H.
Amara
, “
On the vortex formation effect during the application of a nitrogen-gas assisted laser-fusion cutting technique to stainless steel
,”
FDMP-Fluid Dyn. Mater. Process.
11
,
115
125
(
2015
).
20.
T.
Tamsaout
,
E. H.
Amara
, and
A.
Bouabdallah
, “
Numerical approach for hydrodynamic behavior in the kerf with a quasi-complete model of the laser cutting process
,”
J. Opt. Soc. Am. A
37
,
C86
C94
(
2020
).
21.
M.
Borkmann
,
A.
Mahrle
,
E.
Beyer
, and
C.
Leyens
, “
Cut edge structures and gas boundary layer characteristics in laser beam fusion cutting
,” in
Lasers in Manufacturing Conference
,
Munich
, Germany, 24–27 June 2019 (WGL, Erlangen, Germany
2019
).
22.
H.
Schlichting
and
K.
Gersten
,
Grenzschicht-Theorie: Mit 22 Tabellen
, 9th ed. (
Springer
,
Berlin
,
1997
).
23.
A. A.
Zheltovodov
, “
Shock waves/turbulent boundary-layer interactions: Fundamental studies and applications
,” in
Fluid Dynamics Conference
,
New Orleans, LA
, 17–20 June 1996 (AIAA, Reston, VA,
1996
), Vol. 96-1977.
24.
A. A.
Zheltovodov
and
D. D.
Knight
, “
Ideal-gas shock wave—Turbulent boundary-layer interactions in supersonic flows and their modeling: Three-dimensional interactions
,” in
Shock Wave Boundary Layer Interactions (Cambridge Aerospace Series)
, edited by
H.
Babinsky
and
J. K.
Harvey
(
Cambridge University
,
Cambridge
,
2011
).
25.
P.
Dupont
,
J. F.
Debiève
, and
J. P.
Dussauge
, “
Shock-wave unsteadiness in turbulent shock boundary-layer interactions
,” in
Shock Wave Boundary Layer Interactions
, Cambridge Aerospace Series, edited by
H.
Babinsky
and
J. K.
Harvey
(
Cambridge University
,
Cambridge
,
2011
).
26.
P.
Dupont
,
S.
Piponniau
,
A.
Sidorenko
, and
J. F.
Debiève
, “
Investigation by particle image velocimetry measurements of oblique shock reflection with separation
,”
AIAA J.
46
,
1365
1370
(
2008
).
27.
F.
Guiho
,
F.
Alizard
, and
J.-C.
Robinet
, “
Instabilities in oblique shock wave/laminar boundary-layer interactions
,”
J. Fluid Mech.
789
,
1
35
(
2016
).
28.
A. P.
Bassom
and
P.
Hall
, “
Vortex instabilities in three-dimensional boundary layers: The relationship between Görtler and crossflow vortices
,”
J. Fluid Mech.
232
,
647
(
1991
).
29.
W. S.
Saric
, “
Görtler vortices
,”
Annu. Rev. Fluid Mech.
26
,
379
409
(
1994
).
30.
J. P.
Denier
and
A. P.
Bassom
, “
The existence of Görtler vortices in separated boundary layers
,”
Studies Appl. Math.
96
,
247
271
(
1996
).
31.
E.
Schülein
, “Experimentelle untersuchung zur längswirbelbildung in turbulenten uberschallströmungen mit ablösungen,” Deutsches Zentrum für Luft- und Raumfahrt, Institut für Aerodynamik und Strömungstechnik, Göttingen, Rep. IB 224-2002 A 12, Aug. 2002.
32.
J.-Z.
Wu
,
H.-Y.
Ma
, and
M.-D.
Zhou
,
Vorticity and Vortex Dynamics
(
Springer
,
Berlin
,
2010
).
33.
H. B. E.
Kurz
and
M. J.
Kloker
, “
Mechanisms of flow tripping by discrete roughness elements in a swept-wing boundary layer
,”
J. Fluid Mech.
796
,
158
194
(
2016
).
34.
M.
Serra
,
J.
Vétel
, and
G.
Haller
, “
Exact theory of material spike formation in flow separation
,”
J. Fluid Mech.
845
,
51
92
(
2018
).
35.
B. F.
Klose
,
G. B.
Jacobs
, and
M.
Serra
, “
Kinematics of Lagrangian flow separation in external aerodynamics
,”
AIAA J.
58
,
1926
1938
(
2020
).
36.
M.
Borkmann
and
A.
Mahrle
, “
Numerical analysis of the primary gas boundary layer flow structure in laser fusion cutting in context to the striation characteristics of cut edges
,”
Fluids
7
,
17
(
2022
).
37.
D.
Arntz-Schroeder
and
D.
Petring
, “
Analyzing the dynamics of the laser beam cutting process
,”
PhotonicsViews
17
,
43
47
(
2020
).
38.
M.
Borkmann
,
A.
Mahrle
,
P.
Herwig
, and
A.
Wetzig
, “
Fundamental characteristics of fiber laser beam sawing of 10 mm thick stainless steel
,” in
Lasers in Manufacturing Conference 2021
, online live event, 21–24 June 2021 (WGL, Erlangen, Germany,
2021
).
39.
T.
Pinder
and
C.
Goppold
, “
Understanding the changed mechanisms of laser beam fusion cutting by applying beam oscillation, based on thermographic analysis
,”
Appl. Sci.
11
,
921
(
2021
).
40.
J.
Lind
,
C.
Hagenlocher
,
D.
Blazquez-Sanchez
,
M.
Hummel
,
A.
Olowinsky
,
R.
Weber
, and
T.
Graf
, “
Influence of the laser cutting front geometry on the striation formation analysed with high-speed synchrotron X-ray imaging
,”
IOP Conf. Ser. Mater. Sci. Eng.
1135
,
012009
(
2021
).
41.
M.
Sawannia
,
M.
Borkmann
,
P.
Herwig
,
A.
Wetzig
,
R.
Weber
, and
T.
Graf
, “
Influence of laser beam oscillation on the cutting front geometry investigated by high-speed 3D-measurements
,”
Proc. CIRP
111
,
736
739
(
2022
).
42.
M.
Sawannia
,
M.
Borkmann
,
P.
Herwig
,
A.
Wetzig
,
C.
Hagenlocher
, and
T.
Graf
, “
Influence of beam oscillation on the melt flow during laser beam fusion cutting and the resulting cut quality
,” in
Lasers in Manufacturing Conference
,
Munich
, Germany, 26–29 June 2023 (WGL, Erlangen, Germany,
2023
).
43.
M.
Borkmann
and
P.
Herwig
, “Bearbeitungskopf und Verfahren zum Laserstrahlschneiden von Bauteilen,” 10 2022 209 031.4.
44.
A.
Mahrle
,
P.
Herwig
,
D.
Hipp
,
S.
Jäckel
, and
M.
Hertel
, “Verfahren und Vorrichtung zum plasmagestützten Laserstrahlschneiden (Apparatus for laser beam cutting and a method for laser beam cutting),” Patent Application DE 10 2018 205 906 A1 (pending), 2018.
45.
W. M.
Steen
, “Methods and apparatus for cutting and welding,” U.S. patent 4,167,662 (11 September 1979).
46.
W. M.
Steen
, “
Arc augmented laser processing of materials
,”
J. Appl. Phys.
51
,
5636
5641
(
1980
).
47.
S.
Manzke
,
M.
Krümmer
,
F.
Urlau
,
A.
Mahrle
,
U.
Füssel
, and
C.
Leyens
, “
Numerical study of a plasma jet for plasma-assisted laser cutting
,”
Weld. World
67
,
1667
1677
(
2023
).
48.
F.
Urlau
,
A.
Mahrle
,
S.
Manzke
,
M.
Krümmer
,
C.
Leyens
, and
U.
Füssel
, “
Plasma-assisted laser cutting of stainless steel: An analysis of a first prototypical setup
,” in
Lasers in Manufacturing Conference
,
Munich
, Germany, 26–29 June 2023 (WGL, Erlangen, Germany,
2023
).
You do not currently have access to this content.