This paper proposes a scheme for simultaneous classical communication and continuous variable quantum key distribution with a true local oscillator. In this scheme, the emitter’s laser, after binary phase-shift keying (BPSK) modulation, is multiplexed in polarization with the quantum signal and sent to the receiver. After BPSK demodulation and correction, this signal is used for local oscillator regeneration by an optical injection phase-locked loop method. Comparing the effective noise sources in this scheme with typical local local oscillator schemes revealed that continuous variable quantum key distribution (CV-QKD) with a true local oscillator based on the optical injection phase-locked loop encounters lower levels of noise in comparison to the pre-existing genuine local oscillator CV-QKDs.

1.
F.
Grosshans
and
P.
Grangier
, “
Continuous variable quantum cryptography using coherent states
,”
Phys. Rev. Lett.
88
,
057902
(
2002
).
2.
N. A.
Peters
et al., “
Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments
,”
New J. Phys.
11
,
045012
(
2009
).
3.
P.
Jouguet
,
S.
Kunz-Jacques
, and
E.
Diamanti
, “
Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution
,”
Phys. Rev. A
87
,
062313
(
2013
).
4.
B.
Qi
and
C. C. W.
Lim
, “
Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator
,”
Phys. Rev. Appl.
9
,
054008
(
2018
).
5.
A.
Marie
and
R.
Alléaume
, “
Self-coherent phase reference sharing for continuous-variable quantum key distribution
,”
Phys. Rev. A
95
,
012316
(
2017
).
6.
F.
Laudenbach
et al., “
Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator
,”
Quantum
3
,
193
204
(
2019
).
7.
Z.
Su
,
D.
Cai
,
H.
Jiang
,
J.
Wang
,
D.
Wang
,
X.
Guo
, and
Z.
Li
, “
Optical injection locking based local oscillator regeneration for continuous variable quantum key distribution
,”
Opt. Lett.
47
,
1287
1290
(
2022
).
8.
G. P.
Agrawal
,
Fiber-Optic Communication Systems
(
John Wiley & Sons, Inc.
,
New York
,
2021
).
9.
A.
Chiuchiarelli
,
M. J.
Fice
,
E.
Ciaramella
, and
A. J.
Seeds
, “
Effective homodyne optical phase locking to PSK signal by means of 8b10b line coding
,”
Opt. Express
19
,
1707
1712
(
2011
).
10.
B.
Qi
, “
Simultaneous classical communication and quantum key distribution using continuous variables
,”
Phys. Rev. A
94
,
042340
(
2016
).
11.
I.
Devetak
and
P. W.
Shor
, “
The capacity of a quantum channel for simultaneous transmission of classical and quantum information
,”
Commun. Math. Phys.
256
,
287
303
(
2005
).
12.
M. M.
Wilde
,
P.
Hayden
, and
S.
Guha
, “
Information trade-offs for optical quantum communication
,”
Phys. Rev. Lett.
108
,
140501
(
2012
).
13.
H.
Zhong
,
W.
Ye
,
Z.
Zuo
,
D.
Huang
, and
Y.
Guo
, “
Kalman filter-enabled parameter estimation for simultaneous quantum key distribution and classical communication scheme over a satellite-mediated link
,”
Opt. Express
30
,
5981
6002
(
2022
).
14.
H.
Hu
,
H.
Zhong
,
W.
Ye
, and
Y.
Guo
, “
Simultaneous two-way classical communication and measurement-device-independent quantum key distribution on oceanic quantum channels
,”
Commun. Theor. Phys.
74
,
125102
(
2022
).
15.
J.
Kim
,
H.
Schnatz
,
D. S.
Wu
,
G.
Marra
,
D. J.
Richardson
, and
R.
Slavík
, “
Optical injection locking-based amplification in phase-coherent transfer of optical frequencies
,”
Opt. Lett.
40
,
4198
4201
(
2015
).
16.
R.
Kakarla
,
J.
Schröder
, and
P. A.
Andrekson
, “
Optical injection locking at sub nano-Watt powers
,”
Opt. Lett.
43
,
5769
5772
(
2018
).
17.
A.
Bordonalli
,
C.
Walton
, and
A.
Seeds
, “
High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop
,”
J. Lightwave Technol.
17
,
328
342
(
1999
).
18.
F.
Grosshans
,
G.
Van Assche
,
J.
Wenger
,
R.
Brouri
,
N. J.
Cerf
, and
P.
Grangier
, “
Quantum key distribution using gaussian-modulated coherent states
,”
Nature
421
,
238
241
(
2003
).
19.
B.
Qi
,
P.
Lougovski
,
R.
Pooser
,
W.
Grice
, and
M.
Bobrek
, “
Generating the local oscillator ‘locally’ in continuous-variable quantum key distribution based on coherent detection
,”
Phys. Rev. X
5
,
041009
(
2015
).
20.
D. B. S.
Soh
,
C.
Brif
,
P. J.
Coles
,
N.
Lütkenhaus
,
R. M.
Camacho
,
J.
Urayama
, and
M.
Sarovar
, “
Self-referenced continuous-variable quantum key distribution protocol
,”
Phys. Rev. X
5
,
041010
(
2015
).
21.
C.
Henry
, “
Theory of the linewidth of semiconductor lasers
,”
IEEE J. Quantum Electron.
18
,
259
264
(
1982
).
22.
L. A.
Coldren
,
S. W.
Corzine
, and
M. L.
Mashanovitch
,
Diode Lasers and Photonic Integrated Circuits
(
John Wiley & Sons
,
New York
,
2012
).
23.
E. K.
Lau
,
L. J.
Wong
, and
M. C.
Wu
, “
Enhanced modulation characteristics of optical injection-locked lasers: A tutorial
,”
IEEE J. Sel. Top. Quantum Electron.
15
,
618
633
(
2009
).
24.
T. M.
Inc.
, “ode23s:solve stiff differential equations—Low order method,” https://uk.mathworks.com/help/matlab/ref/ode23s.html (2022).
25.
Z.
Liu
and
R.
Slavík
, “
Optical injection locking: From principle to applications
,”
J. Lightwave Technol.
38
,
43
59
(
2020
).
26.
D. E.
McCumber
, “
Intensity fluctuations in the output of cw laser oscillators. I
,”
Phys. Rev.
141
,
306
322
(
1966
).
27.
M.
Lax
, “
Quantum noise. IV. Quantum theory of noise sources
,”
Phys. Rev.
145
,
110
145
(
1966
).
28.
M.
Lax
, “
Quantum noise VII: The rate equations and amplitude noise in lasers
,”
IEEE J. Quantum Electron.
3
,
37
46
(
1967
).
29.
H.-M.
Chin
,
N.
Jain
,
D.
Zibar
,
U. L.
Andersen
, and
T.
Gehring
, “
Machine learning aided carrier recovery in continuous-variable quantum key distribution
,”
npj Quantum Inf.
7
,
20
(
2021
).
30.
F.
Laudenbach
et al., “
Continuous-variable quantum key distribution with Gaussian modulation—the theory of practical implementations
,”
Adv. Quantum Technol.
1
,
1870011
(
2018
).
31.
S.
Fossier
,
E.
Diamanti
,
T.
Debuisschert
,
R.
Tualle-Brouri
, and
P.
Grangier
, “
Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers
,”
J. Phys. B: At. Mol. Opt. Phys.
42
,
114014
(
2009
).
32.
T.
Wang
,
P.
Huang
,
Y.
Zhou
,
W.
Liu
, and
G.
Zeng
, “
Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator
,”
Phys. Rev. A
97
,
012310
(
2018
).
33.
D.
Huang
,
P.
Huang
,
D.
Lin
, and
G.
Zeng
, “
Long-distance continuous-variable quantum key distribution by controlling excess noise
,”
Sci. Rep.
6
,
019201
(
2016
).
34.
Y.
Shao
et al., “
Phase noise model for continuous-variable quantum key distribution using a local local oscillator
,”
Phys. Rev. A
104
,
032608
(
2021
).
35.
S.
Ren
,
S.
Yang
,
A.
Wonfor
,
I.
White
, and
R.
Penty
, “
Demonstration of high-speed and low-complexity continuous variable quantum key distribution system with local local oscillator
,”
Sci. Rep.
11
,
9454
(
2021
).
36.
S.
Ren
,
R.
Kumar
,
A.
Wonfor
,
X.
Tang
,
R.
Penty
, and
I.
White
, “
Reference pulse attack on continuous variable quantum key distribution with local local oscillator under trusted phase noise
,”
J. Opt. Soc. Am. B
36
,
B7
B15
(
2019
).
37.
V.
Scarani
,
H.
Bechmann-Pasquinucci
,
N. J.
Cerf
,
M.
Dušek
,
N.
Lütkenhaus
, and
M.
Peev
, “
The security of practical quantum key distribution
,”
Rev. Mod. Phys.
81
,
1301
1350
(
2009
).
You do not currently have access to this content.