In this work, we report full penetration welding of 1.6 mm thick AISI 304L stainless steel sheets in a butt joint configuration using a pulsed nanosecond fiber laser of an average power of 200 W. The welding was carried out by a focused laser beam oscillating in a circular path. The effects of beam oscillation parameters, e.g., amplitude, frequency, and weld speed, on weld morphology and microstructure were studied. Electron back scattered diffraction was used to characterize the weld microstructure and to map the distribution of austenite and ferrite phases in the weld. The solidification mode of the weld was found to change from the equilibrium FA (Ferrite-Austenite) to AF (Austenite-Ferrite) to A (Austenite) on an increase in the cooling rate with a concomitant drop in the fraction of δ-ferrite. The welds were found to be without any cracks with the sporadic presence of porosities. The welds were found to be mechanically strong.

1.
G.
Lothongkum
,
P.
Chaumbai
, and
P.
Bhandhubanyong
, “
TIG pulse welding of 304L austenitic stainless steel in flat, vertical and overhead positions
,”
J. Mater. Process. Technol.
89–90
,
410
414
(
1999
).
2.
J.
Gabzdyl
and
A.
Rosowski
, “
Welding thin section dissimilar metals with nano second pulsed fiber laser
,” in
Lasers in Manufacturing Conference
, International Congress Centre (German Scientific Laser Society, Munich,
2017
).
3.
E.
Haddad
,
J.
Helm
,
A.
Olowinsky
, and
A.
Gilner
, “
Nanosecond pulsed fiber laser as a tool for laser micro welding
,”
Proc. CIRP
94
,
571
576
(
2020
).
4.
J.
Coroado
,
S.
Ganguly
,
W.
Suder
,
S.
Williams
,
S.
Meco
, and
G.
Pardal
, “
Selection of parameters in nanosecond pulsed wave laser microwelding
,”
Int. J. Adv. Manuf. Technol.
115
,
2929
2944
(
2021
).
5.
J.
Gabzdyl
and
D.
Capostagno
, “
Joining different materials with pulsed nano second fiber lasers: Industrial use of nano second lasers for welding and joining
,”
Laser Tech. J.
14
,
38
41
(
2017
).
6.
E.
Haddad
,
W. S.
Chung
,
O.
Katz
,
J.
Helm
,
A.
Olowinsky
, and
A.
Gilner
, “
Laser microwelding with fiber lasers for battery and fuel cell based electromobility
,”
J. Adv. Join. Process.
5
,
100085
(
2022
).
7.
A.
Ascari
and
A.
Fortunato
, “
Nanosecond pulsed laser welding of high carbon steels
,”
Opt. Laser Technol.
56
,
25
34
(
2014
).
8.
L.
Mayr
,
L.
Tomcic
,
M. K.
Kick
,
C.
Wunderling
, and
M. F.
Zaeh
, “
Contacting of cylindrical lithium ion batteries using short pulse laser beam welding
,” in
Proceedings of Lasers in Manufacturing
(German Scientific Laser Society,
2021
).
9.
A.
Kumar
,
S.
Neogy
,
N.
Keskar
, and
D. J.
Biswas
, “
Laser microwelding of stainless steel and pure aluminum foil
,”
J. Laser Appl.
34
,
012022
(
2022
).
10.
A.
Kumar
,
M. P.
Gupta
,
J.
Banerjee
,
S.
Neogy
,
N.
Keskar
,
R. B.
Bhatt
,
P. G.
Behere
, and
D. J.
Biswas
, “
Micro-welding of stainless steel and copper foils using a nano-second pulsed fiber laser
,”
Lasers Manuf. Mater. Process.
6
,
158
172
(
2019
).
11.
A.
Kumar
,
S.
Neogy
, and
R. B.
Bhatt
, “
On the seam welding of ultra-thin commercially pure (CP) grade-2 titanium foils
,”
Weld. Int.
35
,
255
260
(
2021
).
12.
Q.
Cheng
,
P.
Zhang
,
H.
Shi
, and
Z.
Yu
, “
Study on microstructure and mechanical properties of aluminium copper dissimilar joints by nano second laser spiral welding
,”
Trans. Indian Inst. Met.
75
,
2517
2528
(
2022
).
13.
B.
Zhu
,
L.
Zhen
,
H.
Xia
,
J.
Su
,
S.
Niu
,
L.
Wu
,
C.
Tan
, and
B.
Chen
, “
Effect of scanning path on the nano second pulse laser welded Al/ Cu lapped joints
,”
Opt. Laser Technol.
139
,
106945
(
2021
).
14.
N.
Suutala
,
T.
Takalo
, and
T.
Moisio
, “
Ferritic-austenitic solidification mode in austenitic stainless steel welds
,”
Metall. Trans. A
11
,
717
725
(
1980
).
15.
J. W.
Elmer
,
S. M.
Allen
, and
T. W.
Eagar
, “
Microstructural development during solidification of stainless steel alloys
,”
Metall. Trans. A
20
,
2117
2131
(
1989
).
16.
S. A.
David
,
J. M.
Vitek
,
R. W.
Reed
, and
T. L.
Hebble
, “Effect of rapid solidification on stainless steel weld metal microstructures and its implications on the Schaeffler diagram,” in
ORNL/TM—10487
, Oak Ridge National Lab. Report No. ORNL/TM-10487 (1987).
17.
T.
Volkmann
,
W.
Löser
, and
D. M.
Herlach
, “
Nucleation and phase selection in undercooled Fe-Cr-Ni melts: Part I.: Theoretical analysis of nucleation behaviour
,”
Metall. Mater. Trans. A
28
,
453
460
(
1997
).
18.
T.
Volkmann
,
W.
Löser
, and
D. M.
Herlach
, “
Nucleation and phase selection in undercooled Fe-Cr-Ni melts: Part II.: Containerless solidification experiments
,”
Metall. Mater. Trans. A
28
,
461
469
(
1997
).
19.
T.
Koseki
and
M. C.
Flemings
, “
Solidification of undercooled Fe-Cr-Ni alloys: Part I.: Thermal behaviour
,”
Metall. Mater. Trans. A
26
,
2991
2999
(
1995
).
20.
T.
Koseki
and
M. C.
Flemings
, “
Solidification of undercooled Fe-Cr-Ni alloys: Part II.: Microstructural evolution
,”
Metall. Mater. Trans. A
27
,
3226
3240
(
1996
).
21.
T. F.
Kelly
,
M.
Cohen
, and
J. B.
Vander Sande
, “
Rapid solidification of a droplet-processed stainless steel
,”
Metall. Trans. A
15
,
819
833
(
1984
).
22.
T.
Koseki
and
M. C.
Flemings
, “
Solidification of undercooled Fe-Cr-Ni alloys: Part III.: Phase selection in chill casting
,”
Metall. Mater. Trans. A
28
,
2385
2395
(
1997
).
23.
Q.
Wang
,
S.
Chen
, and
L.
Rong
, “
δ-ferrite formation and Its effect on the mechanical properties of heavy-section AISI 316 stainless steel casting
,”
Metall. Mater. Trans. A
51
,
2998
3008
(
2020
).
24.
J. M.
Vitek
,
A.
Dasgupta
, and
S. A.
David
, “
Microstructural modification of austenitic stainless steels by rapid solidification
,”
Metall. Trans. A
14
,
1833
1841
(
1983
).
25.
J. W.
Elmer
, “The influence of cooling rate on the microstructure of stainless steel alloys,”
Lawrence Livermore National Lab
. Report No. UCRL-53934 (1988).
26.
S.
Fukumoto
,
K.
Fujiwara
,
S.
Toji
, and
A.
Yamamoto
, “
Small-scale resistance spot welding of austenitic stainless steels
,”
Mater. Sci. Eng. A
492
,
243
249
(
2008
).
You do not currently have access to this content.