Thick dissimilar joints of steel and aluminum are still of high interest for shipbuilding in order to reduce the weight and the center of gravity of the ship. Thereby, a reduction of the CO2 emissions as a result of lower fuel consumption and a higher ship stability are achievable. The steel and aluminum ship parts are joined with the aid of an explosive-welded adapter, whose manufacturing is complex, time-consuming, and expensive. Furthermore, the adapter must be oversized to meet strength requirements. Therefore, the shipbuilding industry demands a better alternative. In this study, laser beam welding processes are developed for joining steel S355 J2 (t = 5 mm) with aluminum alloy AA6082-T651 (t = 10 mm) in a lap configuration using a laser beam source with a maximum output power of PL = 6 kW. Laser beam welding of this dissimilar material combination brings certain challenges, such as the formation of brittle microstructures in the weld metal depending on the aluminum content. To improve the microstructure and the associated mechanical properties of the weld seam, a filler material in the form of iron welding powder is used. The welding powder is provided in a groove in the aluminum bottom sheet. In this way, an iron-rich microstructure results, which leads to an increase in the weld seam quality, as shown in metallographic analysis and tensile tests. For example, the cross tension force can be increased by 100%.

1.
S.
Büdgam
,
V.
Freitag
,
O.
Hahn
, and
M.
Ruther
, “
Optimization of joining techniques for multi-material constructions in body making
,”
ATZ Worldwide
106
,
23
27
(
2004
).
2.
R.
Spina
and
L.
Tricarico
, “
Laser welding of aluminium-steel clad materials for naval applications
,” in
Laser Welding
, edited by
X. N.
Stone
(
InTech
,
Rijeka
,
2010
), pp.
77
106
.
3.
S.
Meco
,
S.
Ganguly
,
S.
Williams
, and
N.
McPherson
, “
Effect of laser processing parameters on the formation of intermetallic compounds in Fe-Al dissimilar welding
,”
J. Mater. Eng. Perform.
23
,
3361
3370
(
2014
).
4.
P.
Noury
,
B.
Hayman
,
D.
McGeorge
, and
J.
Weitzenbock
, “Lightweight construction for advanced shipbuilding—Recent development,” DNV internal report (2002).
5.
H.
Uzun
,
C. D.
Donne
,
A.
Argagnotto
,
T.
Ghidini
, and
C.
Gambaro
, “
Friction stir welding of dissimilar Al of 6013-T4 to X5CrNi18-10 stainless steel
,”
J. Mater. Des.
26
,
41
46
(
2005
).
6.
R. M.
Chao
,
J. M.
Yang
, and
S. R.
Lay
, “
Interfacial toughness for the shipboard aluminum/steel structural transition joint
,”
Mar. Struct.
10
,
353
362
(
1997
).
7.
F.
Findik
, “
Recent developments in explosive welding
,”
J. Mater. Des.
32
,
1081
1093
(
2011
).
8.
M.
Acarer
and
B.
Demir
, “
An investigation of mechanical and metallurgical properties of explosive welded aluminum–dual phase steel
,”
J. Mater. Lett.
62
,
4158
4160
(
2008
).
9.
F.
Roland
,
T.
Reinert
, and
G.
Pethan
, “
Laser welding in shipbuilding—An overview of the activities at Meyer Werft
,”
Weld. Res. Abroad
49
,
39
51
(
2003
).
10.
P.
Wang
,
X.
Chen
,
Q.
Pan
,
B.
Madigan
, and
J.
Long
, “
Laser welding dissimilar materials of aluminum to steel: An overview
,”
Int. J. Adv. Manuf. Technol.
87
,
3081
3090
(
2016
).
11.
C.
Pohle
,
Schweißen von Werkstoffkombinationen: Metallkundliche und Ferti-Gungstechnische Grundlagen Sowie Ausführungsbeispiele
(
DSV-Verlag
,
Düsseldorf
,
1999
).
12.
S.
Meco
,
G.
Pardal
,
S.
Ganguly
,
N.
Williams
, and
N.
McPherson
, “
Application of laser in seam welding of dissimilar steel to aluminum joints for thick structural components
,”
J. Opt. Lasers Eng.
67
,
22
30
(
2015
).
13.
U. R.
Kattner
,
Binary Alloy Phase Diagrams
(
ASM International
,
Materials Park
,
OH
,
1990
).
14.
O.
Hiroaki
,
M. E.
Schlesinger
, and
E. M.
Mueller
,
Alloy Phase Diagrams
,
3rd ed.
(
ASM International
,
Geauga County
,
OH
,
1992
).
15.
M. J.
Torkamany
,
S.
Tahamtan
, and
J.
Sabbaghzadeh
, “
Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser
,”
J. Mater. Des.
31
,
458
465
(
2010
).
16.
L.
Agudo
,
D.
Eyidi
,
C. H.
Schmaranzer
,
E.
Arenholz
,
N.
Jank
,
J.
Bruckner
, and
A. R.
Pyzalla
, “
Intermetallic FexAly-phases in a steel/Al-alloy fusion weld
,”
J. Mater. Sci.
42
,
4205
4214
(
2007
).
17.
R.
Brockmann
,
K.
Dickmann
,
C.
Radscheit
,
E.
Schubert
, and
G.
Sepold
, “
Method for the laser beam joining of aluminum and steel in the thin sheet range
,”
J. Weld. Cutting
48
,
46
47
(
1996
).
18.
C.
Thomy
, “
Hybrid laser-arc welding of dissimilar metals
,” in
Hybrid Laser-Arc Welding
, edited by
F. O.
Olsen
(
Woodhead Publishing
,
Oxford
,
2009
), pp.
270
295
.
19.
M.
Potesser
,
T.
Schoeberl
,
H.
Antrekowitsch
, and
J.
Bruckner
, “
The characterization of the intermetallic Fe-Al layer of steel-aluminum welding
,” in
EPD Congress 2006
, edited by
S. M.
Howard
,
R. L.
Stephens
,
C. J.
Newman
,
J.-Y.-J.
Hwang
,
A. M.
Go-khale
, and
T. T.
Chen
(
The Minerals, Metals & Materials Society
, San Antonio, TX,
2006
).
20.
F.
Haidara
,
M.-C.
Record
,
B.
Duployer
, and
D.
Mangelinck
, “
Phase formation in Al-Fe thin film systems
,”
Intermetallics
23
,
143
147
(
2012
).
21.
J.
Rathod
and
M.
Kutsuna
, “
Joining of aluminum alloy 5052 and low-carbon steel by laser roll welding
,”
Weld. J.
83
,
16
26
(
2004
).
22.
M.
Yasuyama
,
K.
Ogawa
, and
T.
Taka
, “
Spot welding of aluminum and steel sheet with insert of aluminum clad steel sheet. Part 1
,”
Q. J. Jpn. Weld. Soc.
14
,
314
320
(
1996
).
23.
C.
Sykes
and
J. W.
Bampflyde
,
The Physical Properties of Iron-Aluminium Alloys
(
The Journal of the Iron and Steel Institute
,
London
,
1934
).
24.
U.
Brüx
and
G.
Frommeyer
,
Tiefziehfähige Eisen-Aluminium-Leichtbaustähle
(
Fachaufsatz Leichtbau-Stahl
,
Konstruktion
,
2002
).
25.
O.
Seffer
,
A.
Springer
, and
S.
Kaierle
, “
Investigations on remote laser beam welding of dissimilar joints of aluminum alloys and steel with varying sheet thicknesses for car body construction
,”
J. Laser Appl.
29
,
022414
(
2017
).
26.
M.
Schimek
,
A.
Springer
,
S.
Kaierle
,
D.
Kracht
, and
V.
Wesling
, “Laser welded dissimilar steel-aluminum seams for automotive lightweight construction,”
Phys. Procedia
39
,
43
50
(
2012
).
27.
C.
Yuce
,
F.
Karpat
, and
N.
Yavuz
, “
Investigations on the microstructure and mechanical properties of laser welded dissimilar galvanized steel–aluminum joints
,”
Int. J. Adv. Manuf. Technol.
104
,
2693
2704
(
2019
).
28.
R.
Lahdo
,
A.
Springer
,
O.
Meier
,
S.
Kaierle
, and
L.
Overmeyer
, “
Investigations on laser welding of dissimilar joints of steel and aluminium using a high-power diode laser
,”
J. Laser Appl.
30
,
6/2018
(
2018
).
29.
R.
Lahdo
, “
Laser beam welding of steel to aluminium alloys in thick sheet range
,”
Ph.D. thesis
,
Gottfried Wilhelm Leibniz Universität Hannover, TEWISS Verlag
,
Garbsen
,
2021
.
30.
P.
Kallage
, “
Laserschweißen von Mischverbindungen aus aluminium und verzinktem sowie unverzinktem Stahl
,”
Ph.D. thesis
,
Gottfried Wilhelm Leibniz Universität Hannover, PZH Verlag
,
Garbsen
,
2013
.
31.
G.
Sierra
,
P.
Peyre
,
F.
Deschaux-Beaume
,
D.
Stuart
, and
G.
Fras
, “
Steel to aluminum keyhole laser welding
,”
Mater. Sci. Eng., A
447
,
197
208
(
2007
).
32.
O.
Seffer
and
R.
Pfeifer
, “
Laserstrahlschweißen von Anwendungsnahen Stahl-Aluminium-Mischverbindungen für den Automobilen Leichtbau
,” in
Forschungsvereinigung Automobiltechnik e.V. (FAT)
,
FAT-Schriftenreihe 288
(Verband der Automobilindustrie, Berlin,
2016
).
33.
Ö
Geridönmez
, “
Schweißen von aluminium—anders, aber nicht schwieriger
,”
Praktiker
40
,
411
413
(
1988
).
34.
W.-I.
Cho
,
S.-J.
Na
,
C.
Thomy
, and
F.
Vollertsen
, “
Numerical simulation of molten pool dynamics in high power disk laser welding
,”
J. Mater. Process. Technol.
212
,
262
275
(
2012
).
35.
R. G.
Vázquez
,
H. M.
Koch
, and
A.
Otto
, “
Multi-physical simulation of laser welding
,”
Phys. Proc.
56
,
1334
1342
(
2014
).
You do not currently have access to this content.