Stainless steels are established in various fields with challenging environments, e.g., offshore, petrochemical, and automotive industries. The combination of high-performance properties and high-value added applications makes stainless steels attractive for additive manufacturing (AM). In powder-based AM processes such as laser-directed energy deposition (DED-LB/M), typically prealloyed powders are used for part generation. By an innovative approach called in situ alloying, the chemical composition of prealloyed powder can be adjusted by mixing it with an additional powder material. This allows the material properties to be flexibly and efficiently tailored for specific applications. In this work, a standard duplex stainless steel (DSS) is modified for the first time with elemental powders in order to systematically adjust the resulting phase formation, mechanical properties, and corrosion resistance. For this, powder mixtures were generated consisting of prealloyed DSS 1.4462 and additions of pure chromium (1.0–7.0 wt. %) or nickel (1.0–5.0 wt. %) powder. Processing them by means of DED-LB/M resulted in specimens (rel. density > 99.7%) with ferrite–austenite phase ratios ranging from almost 10%:90% to 90%:10%. Increasing the chromium content successively increased the ferrite percentage, resulting in higher material hardness, higher strength, and resistance against pitting corrosion but poor ductility and toughness compared to unmodified DSS. In contrast, an increased nickel content resulted in an increased austenite formation with lower hardness and strength but increased ductility. This strategy was shown to add flexibility to powder-based AM processes by enabling an on-demand material design for stainless steels.

1.
N.
Haghdadi
,
Majid
Laleh
,
Maxwell
Moyle
, and
Sophie
Primig
, “
Additive manufacturing of steels: A review of achievements and challenges
,”
J. Mater. Sci.
56
,
64
107
(
2021
).
2.
S.
Sing
,
S.
Huang
,
G. D.
Goh
,
G. L.
Goh
,
C. F.
Tey
,
J. H. K.
Tan
, and
W. Y.
Yeong
, “
Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion
,”
Prog. Mater. Sci.
119
,
100795
(
2021
).
3.
T.
Fedina
,
Jesper
Sundqvist
,
John
Powell
, and
Alexander F. H.
Kaplan
, “
A comparative study of water and gas atomized low alloy steel powders for additive manufacturing
,”
Addit. Manuf.
36
,
101675
(
2020
).
4.
M. H.
Mosallanejad
,
Behzad
Niroumand
,
Alberta
Aversa
, and
Abdollah
Saboori
, “
In-situ alloying in laser-based additive manufacturing processes: A critical review
,”
J. Alloys Compd.
872
,
159567
(
2021
).
5.
A. A.
Akilan
,
Azim
Gökçe
,
Subrata Deb
Nath
,
Vamsi Krishna
Balla
,
Kunal H.
Kate
, and
Sundar V.
Atre
, “
Laser powder bed fusion of in-situ composites using dry-mixed Ti6Al4V and Si3N4 powder
,”
J. Manuf. Proc.
59
,
43
50
(
2020
).
6.
F.
Arias-González
et al, “
In-situ laser directed energy deposition of biomedical Ti-Nb and Ti-Zr-Nb alloys from elemental powders
,”
Metals
11
,
1205
(
2021
).
7.
S.
Khademzadeh
,
Nader
Parvin
, and
Paolo F.
Bariani
, “
Production of NiTi alloy by direct metal deposition of mechanically alloyed powder mixtures
,”
Int. J. Prec. Eng. Manuf.
16
,
2333
2338
(
2015
).
8.
Yitao
Chen
et al, “
TiNi-based Bi-metallic shape-memory alloy by laser-directed energy deposition
,”
Materials
15
,
3945
(
2022
).
9.
F.
Huber
,
Tomasz
Śleboda
,
Aneta
Łukaszek-Sołek
,
Krystian
Zyguła
, and
Marek
Wojtaszek
, “
In-situ alloy formation of a WMoTaNbV refractory metal high entropy alloy by laser powder bed fusion
,”
Materials
14
,
2021
(
2021
).
10.
S.-P.
Wang
and
Jian
Xu
, “
TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties
,”
Mater. Sci. Eng. C
73
,
80
89
(
2017
).
11.
W.
Li
,
Xueyang
Chen
,
Lei
Yan
,
Jingwei
Zhang
,
Xinchang
Zhang
, and
Frank
Liou
, “
Additive manufacturing of a new Fe-Cr-Ni alloy with gradually changing compositions with elemental powder mixes and thermodynamic calculations
,”
Int. J. Adv. Manuf. Technol.
95
,
1013
1023
(
2018
).
12.
A.
Straße
,
Andrey
Gumenyuk
, and
Michael
Rethmeier
, “
Study on duplex stainless steel powder compositions for the coating of thick plates for laser beam welding
,”
Adv. Eng. Mater.
24
,
2101327
(
2022
).
13.
J.
Zuback
,
T. A.
Palmer
, and
T.
DebRoy
, “
Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys
,”
J. Alloys Compd.
770
,
995
1003
(
2019
).
14.
P.
Collins
,
R.
Banerjee
,
S.
Banerjee
, and
H. L.
Fraser
, “
Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys
,”
Sci. Eng. A
352
,
118
128
.
15.
J.
Bedmar
,
Ainhoa
Riquelme
,
Pilar
Rodrigo
,
Belen
Torres
, and
Joaquin
Rams
, “
Comparison of different additive manufacturing methods for 316L stainless steel
,”
Materials
14
,
6504
(
2021
).
16.
D.
Zhang
,
Aobo
Liu
,
Bangzhao
Yin
, and
Peng
Wen
, “
Additive manufacturing of duplex stainless steels—A critical review
,”
J. Manuf. Proc.
73
,
496
517
(
2022
).
17.
Outokumpu
,
Handbook of Stainless Steels
(
Outokumpu Oyj
,
Avesta
,
2013
).
18.
S.
Patra
,
A.
Agrawal
,
A.
Mandal
, and
A. S.
Podder
, “
Characteristics and manufacturability of duplex stainless steel
,”
Trans. Indian Inst. Met.
74
,
1089
1098
(
2021
).
19.
Z.
Jiang
,
X. Y.
Chen
,
H.
Huang
, and
X. Y.
Liu
, “
Grain refinement of Cr25Ni5Mo1.5 duplex stainless steel by heat treatment
,”
Mater. Sci. Eng. A
363
,
263
267
(
2003
).
20.
W.-B.
Busch
,
Merkblatt: Schweißen von Edelstahl
(
Informationsstelle Edelstahl Rostfrei
, Düsseldorf,
2019
), p.
28
.
21.
F.
Hengsbach
et al, “
Duplex stainless steel fabricated by SLM—Microstructural and mechanical properties
,”
Mater. Des.
133
,
136
142
(
2017
).
22.
M.
Mirz
et al, “
Influence of the L-PBF process atmosphere on the microstructure and tensile properties of AISI 318 LN duplex stainless steel
,”
J. Manuf. Mater. Proc.
6
,
32
(
2022
).
23.
M. A.
Bermejo
,
Karthikeyan
Thalavai Pandian
,
Björn
Axelsson
,
Ebrahim
Harati
,
Agnieszka
Kisielewicz
, and
Leif
Karlsson
, “
Microstructure of laser metal deposited DSS: Influence of shielding gas and heat treatment
,”
Weld. World
65
,
525
541
(
2021
).
24.
M.
Brázda
et al,
Effect of heat treatment on mechanical properties of duplex steel SAF 2507 manufactured by DED
,”
Mater. Sci. Eng.
1178
,
012008
(
2021
).
25.
X.
Bi
et al, “
Microstructure and texture of 2205 duplex stainless steel additive parts fabricated by the cold metal transfer (CMT) wire and arc additive manufacturing (WAAM)
,”
Metals
12
,
1655
(
2022
).
26.
A.
Queguineur
,
Reza
Asadi
,
Marta
Ostolaza
,
Emilie Hørdum
Valente
,
Venkata Karthik
Nadimpalli
,
Gaurav
Mohanty
,
Jean-Yves
Hascoët
, and
Iñigo Flores
Ituarte
, “
Wire arc additive manufacturing of thin and thick walls made of duplex stainless steel
,”
Int. J. Adv. Manuf. Technol.
127
,
381
400
(
2023
).
27.
L.
Becker
,
J.
Lentz
,
S.
Benito
,
C.
Cui
,
N.
Ellendt
,
R.
Fechte-Heinen
, and
S.
Weber
, “
A comparative study of in-situ alloying in laser powder bed fusion for the stainless steel X2CrNiMoN20-10-3
,”
J. Mater. Proc. Tech.
318
,
118038
(
2023
).
28.
A.
Maier
et al, “
Influence of process parameters on the microstructural and mechanical properties of duplex stainless steel 2205 (1.4462) processed by DED-LB/M
,”
Proc. CIRP
111
,
241
246
(
2022
).
29.
A.
Maier
et al, “Comparison of material properties of 1.4462 processed by DED-LB/M and PBF-LB/M,” in
Springer Tracts in Additive Manufacturing: Additive Manufacturing in Multidisciplinary Cooperation and Production
(Springer Cham,
2023
).
30.
S. M.
Arbo
,
Afaf
Saai
,
Sture Henning
Sørli
,
Cato
Dybdahl
,
Morten
Onsøien
, and
Mette
Nedreberg
, “
Optimization of laser metal deposition process for 2205 duplex stainless steel
,”
Key Eng. Mater.
926
,
90
102
(
2022
).
You do not currently have access to this content.