The solidification behavior of a molten pool is a critical factor affecting the mechanical properties of welded joints. This paper develops a multi-scale model combining the macroscale heat transfer and fluid flow model with the microscale phase field model for calculating the microstructure evolution on two different planes that are perpendicular to the thickness direction in the laser welding of the aluminum alloy. To obtain the time-varying temperature gradient (G) and solidification velocity (R) used in the simulation, a transient solidification conditions model is proposed. These models are validated by comparing the simulation results with the experimental results. The results indicate that G decreases, while R increases during solidification process. G/R decreases on both two planes, which results in the transformation of the microstructure from planar to cellular and then to the columnar grain. Additionally, it is found that the primary dendrite arm spacing of columnar grains on the lower plane is smaller, which is related to lower G−1/2R−1/4.

1.
S.
He
,
L.
Liu
,
Y.
Zhao
,
Y.
Kang
,
F.
Wang
, and
X.
Zhan
, “
Comparative investigation between fiber laser and disk laser: Microstructure feature of 2219 aluminum alloy welded joint using different laser power and welding speed
,”
Opt. Laser Technol.
141
,
107121
(
2021
).
2.
X.
Yin
,
Y.
Zhao
,
Y.
Liu
,
J.
Wang
,
L.
Wang
, and
X.
Zhan
, “
Porosity morphology and its evolution mechanism in laser mirror welding of 2219 aluminum alloy
,”
Opt. Laser Technol.
164
,
109456
(
2023
).
3.
L.
Li
,
J.
Gong
,
H.
Xia
,
G.
Peng
,
Y.
Hao
,
S.
Meng
, and
J.
Wang
, “
Influence of scan paths on flow dynamics and weld formations during oscillating laser welding of 5A06 aluminum alloy
,”
J. Mater. Res. Technol.
11
,
19
32
(
2021
).
4.
J.
Nie
,
Y.
Li
,
S.
Liu
,
H.
Zhang
,
R.
Duan
,
S.
Wei
,
J.
Cai
, and
Q.
Guan
, “
Evolution of microstructure of Al particle-reinforced NiCoCrAlY coatings fabricated on 304 stainless steel using laser cladding
,”
Mater. Lett.
289
,
129431
(
2021
).
5.
Z.
Yang
,
K.
Jin
,
H.
Fang
, and
J.
He
, “
Multi-scale simulation of solidification behavior and microstructure evolution during vacuum electron beam welding of Al-Cu alloy
,”
Int. J. Heat Mass Transfer
172
,
121156
(
2021
).
6.
S.
Kou
,
Welding Metallurgy
(
Wiley
, Hoboken,
2003
).
7.
H.
Zhou
,
F.
Fu
,
Z.
Dai
,
Y.
Qiao
,
J.
Chen
, and
W.
Liu
, “
Effect of laser power on microstructure and micro-galvanic corrosion behavior of a 6061-T6 aluminum alloy welding joints
,”
Metals
11
,
1
8
(
2021
).
8.
S.
Geng
,
P.
Jiang
,
L.
Guo
,
X.
Gao
, and
G.
Mi
, “
Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys
,”
Int. J. Heat Mass Transfer
149
,
119252
(
2020
).
9.
A.
Farzadi
,
M.
Do-Quang
,
S.
Serajzadeh
,
A. H.
Kokabi
, and
G.
Amberg
, “
Phase-field simulation of weld solidification microstructure in an Al-Cu alloy
,”
Modell. Simul. Mater. Sci. Eng.
16
,
065005
(
2008
).
10.
W. J.
Zheng
,
Z. B.
Dong
,
Y. H.
Wei
,
K. J.
Song
,
J. L.
Guo
, and
Y.
Wang
, “
Phase field investigation of dendrite growth in the welding pool of aluminum alloy 2A14 under transient conditions
,”
Comput. Mater. Sci.
82
,
525
530
(
2014
).
11.
P.
Jiang
,
S.
Gao
,
S.
Geng
,
C.
Han
, and
G.
Mi
, “
Multi-physics multi-scale simulation of the solidification process in the molten pool during laser welding of aluminum alloys
,”
Int. J. Heat Mass Transfer
161
,
120316
(
2020
).
12.
L.
Guo
,
C.
Han
,
L.
Ren
,
W.
Yang
, and
A.
Yin
, “
Effect of transient thermal conditions on columnar-to-equiaxed transition during laser welding: A phase-field study
,”
Metals
12
,
1
20
(
2022
).
13.
Y.
Ai
,
Y.
Huang
,
L.
Yu
, and
X.
Liu
, “
The investigation of microstructure evolution in electron beam additive manufacturing by phase field method
,”
J. Laser Appl.
33
,
042019
(
2021
).
14.
L.
Xiong
,
G.
Zhu
,
G.
Mi
,
C.
Wang
, and
P.
Jiang
, “
A phase-field simulation of columnar-to-equiaxed transition in the entire laser welding molten pool
,”
J. Alloys Compd.
858
,
157669
(
2021
).
15.
Y.
Ai
,
X.
Liu
,
Y.
Huang
, and
L.
Yu
, “
Numerical analysis of the influence of molten pool instability on the weld formation during the high speed fiber laser welding
,”
Int. J. Heat Mass Transfer
160
,
120103
(
2020
).
16.
Y.
Ai
,
L.
Yu
,
Y.
Huang
, and
X.
Liu
, “
The investigation of molten pool dynamic behaviors during the ‘∞’ shaped oscillating laser welding of aluminum alloy
,”
Int. J. Therm. Sci.
173
,
107350
(
2022
).
17.
F.
Farrokhi
,
B.
Endelt
, and
M.
Kristiansen
, “
A numerical model for full and partial penetration hybrid laser welding of thick-section steels
,”
Opt. Laser Technol.
111
,
671
686
(
2019
).
18.
D.
Tourret
and
A.
Karma
, “
Growth competition of columnar dendritic grains: A phase-field study
,”
Acta Mater.
82
,
64
83
(
2015
).
19.
H.
Diepers
,
D.
Ma
, and
I.
Steinbach
, “
History effects during the selection of primary dendrite spacing: Comparison of phase-field simulations with experimental observations
,”
J. Cryst. Growth
237 239
,
149
153
(
2002
).
20.
N. S.
Bailey
,
K.-M.
Hong
, and
Y. C.
Shin
, “
Comparative assessment of dendrite growth and microstructure predictions during laser welding of Al 6061 via 2D and 3D phase field models
,”
Comput. Mater. Sci.
172
,
109291
(
2020
).
21.
L.
Wang
,
N.
Wang
, and
N.
Provatas
, “
Liquid channel segregation and morphology and their relation with hot cracking susceptibility during columnar growth in binary alloys
,”
Acta Mater.
126
,
302
312
(
2017
).
22.
M.
Hasan
and
L.
Begum
, “
Low-head direct chill slab casting of aluminium alloy AA-6061: 3-D numerical study
,”
Int. J. Cast Met. Res.
29
,
137
153
(
2016
).
23.
J. A.
Vargas
,
J. E.
Torres
,
J. A.
Pacheco
, and
R. J.
Hernandez
, “
Analysis of heat input effect on the mechanical properties of Al-6061-T6 alloy weld joints
,”
Mater. Des.
52
,
556
564
(
2013
).
24.
J.
Zhang
,
Z.
Fan
,
Y. Q.
Wang
, and
B. L.
Zhou
, “
Equilibrium pseudobinary Al-Mg2Si phase diagram
,”
Mater. Sci. Technol.
17
,
494
496
(
2001
).
25.
Y.
Kang
,
X.
Zhan
,
S.
He
,
T.
Liu
, and
L.
Sun
, “
Porosity-grain growth relationships in the laser beam deep penetration welding of 6061 aluminum alloy
,”
J. Adhes. Sci. Technol.
35
,
1372
1392
(
2021
).
26.
W.
Zheng
,
Z.
Dong
,
Y.
Wei
, and
K.
Song
, “
Onset of the initial instability during the solidification of welding pool of aluminum alloy under transient conditions
,”
J. Cryst. Growth
402
,
203
209
(
2014
).
27.
L.
Wang
,
Y.
Wei
,
J.
Chen
, and
W.
Zhao
, “
Macro-micro modeling and simulation on columnar grains growth in the laser welding pool of aluminum alloy
,”
Int. J. Heat Mass Transfer
123
,
826
838
(
2018
).
28.
S.
Geng
,
P.
Jiang
,
Y.
Ai
,
R.
Chen
,
L.
Cao
,
C.
Han
,
W.
Liu
, and
Y.
Liu
, “
Cellular automaton modeling for dendritic growth during laser beam welding solidification process
,”
J. Laser Appl.
30
,
032406
(
2018
).
29.
W.
Kurz
and
D. J.
Fisher
, “
Dendrite growth at the limit of stability: Tip radius and spacing
,”
Acta Metall.
29
,
11
20
(
1981
).
You do not currently have access to this content.