To study the influence of shot peening residual compressive stress on the fatigue crack propagation behavior of 316L austenitic stainless steel, a three-dimensional finite element model of the compact tensile specimen based on abaqus software and an initial stress simulation model of a shot peening residual stress imported through the re-development of the SIGINI subroutine are established. The fatigue crack propagation behavior under the combined effect of the shot peening residual stress field and external cyclic loading is investigated using the extended finite element method. The results show that the crack propagation path and fatigue life obtained by the finite element method are in good agreement with the experimental results, and the error of the fatigue life is only about 4.05%. When the crack propagates into the shot peening region, the shot peening residual compressive stresses imported on the specimen surface and subsurface enhance the crack closure effect and suppress the crack propagation behavior. The impact of shot peening in the double side peened samples is higher than that in the single side peened samples. For 19 mm crack lengths, double side shot peened specimens presented a 1.2 times increase in fatigue life, compared to single side shot peened specimens (1.1 times).

1.
E. Q.
Wu
,
Y.
Zhao
,
B.
Zhao
, and
W. P.
Xu
, “
Study of hydrogen release resulting from the transformation of austenite into martensite
,”
Int. J. Hydrogen Energy
46
,
30412
(
2021
).
2.
Y. Q.
Qin
,
Y.
Gong
,
Y. W.
Yuan
, and
Z. G.
Yang
, “
Failure analysis on leakage of hydrogen storage tank for vehicles occurring in oil circulation fatigue test
,”
Eng. Failure Anal.
117
,
104830
(
2020
).
3.
N.
Kalentics
,
M. O. V. D.
Seijas
,
S.
Griffiths
,
C.
Leinenbach
, and
E.
LogéR
, “
3D laser shock peening–A new method for improving fatigue properties of selective laser melted parts
,”
Addit. Manuf.
33
,
101112
(
2020
).
4.
W.
Guo
,
Y. X.
Zhang
,
H.
Sun
,
H. Q.
Zhang
, and
Y.
Zhu
, “
Microstructure evolution and fatigue properties subjected to optimized coverage areas of laser shock peened TB10 titanium alloy
,”
Opt. Laser Technol.
158
,
108851
(
2023
).
5.
H. P.
Zhang
,
Z. Y.
Cai
,
J. X.
Chi
,
R. J.
Sun
,
Z. G.
Che
,
H. Q.
Zhang
, and
W.
Guo
, “
Multiple laser shock peening effects on residual stress distribution and fatigue crack growth behaviour of 316L stainless steel
,”
J. Alloys Compd.
887
,
161427
(
2021
).
6.
L. H.
Meng
,
Y. C.
Shan
,
A. M.
Khan
,
M.
Jamil
, and
N.
He
, “
Holistic 3D simulations and experimental investigation of surface quality and residual stresses in shot peening
,”
Int. J. Adv. Manuf. Technol.
121
,
1027
1047
(
2022
).
7.
T.
Kim
,
J. H.
Lee
,
H.
Lee
, and
S. K.
Cheong
, “
An area-average approach to peening residual stress under multi-impacts using a three-dimensional symmetry-cell finite element model with plastic shots
,”
Mater. Des.
31
,
50
59
(
2010
).
8.
S.
Manchoul
,
R.
Seddik
,
R. B.
Sghaier
, and
R.
Fathallah
, “
Prediction and comparison of high-cycle fatigue behavior of ultrasonic and conventional shot-peened parts
,”
Int. J. Adv. Manuf. Technol.
103
,
2091
2108
(
2019
).
9.
R.
Sun
,
S.
Keller
,
Y.
Zhu
,
W.
Guo
,
N.
Kashaev
, and
B.
Klusemann
, “
Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy
,”
Int. J. Fatigue
145
,
106081
(
2021
).
10.
ASTM, “Standard test method for measurement of fatigue crack growth rates,” Standard E647-11, Annual Book of ASTM Standards (ASTM International, West Conshohocken, PA, 2011).
11.
Z. Y.
Chen
,
H. C.
Bao
,
Y. W.
Dai
, and
Y. H.
Liu
, “
Numerical prediction based on XFEM for mixed-mode crack growth path and fatigue life under cyclic overload
,”
Int. J. Fatigue
162
,
106943
(
2021
).
12.
N. N.
Duan
,
S. C.
Lu
,
X. Y.
Ma
,
W. J.
Xu
,
F. Q.
Jin
, and
S. H.
Wang
, “
Research on extended finite element method for axisymmetric electrostatic field based on liquid nitrogen with bubbles
,”
Appl. Sci.
11
,
5214
(
2021
).
13.
C.
Correa
,
L.
Ruiz de Lara
,
M.
Díaz
,
A.
Gil-Santos
,
J. A.
Porro
, and
J. L.
Ocaña
, “
Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening
,”
Int. J. Fatigue
79
,
1
9
(
2015
).
14.
W. Y.
Zhang
,
W. C.
Jiang
,
Y.
Yu
,
F.
Zhou
,
Y.
Luo
, and
M.
Song
, “
Fatigue crack simulation of the 316L brazed joint using the virtual crack closure technique
,”
Int. J. Pressure Vessels Piping
173
,
20
25
(
2019
).
15.
H.
Chen
,
H.
Xue
,
J. W.
Sun
,
H. L.
Xie
,
K.
Zhao
, and
Q. S.
Wei
, “
SCC crack propagation characteristics under residual stress field based on XFEM
,”
Hot Work Technol.
46
,
162
166
(
2017
) (in Chinese).
16.
B. D.
Upadhyay
,
S. S.
Sonigra
, and
S. D.
Daxini
, “
Numerical analysis perspective in structural shape optimization: A review post 2000
,”
Adv. Eng. Softw.
155
,
102992
(
2021
).
17.
C. C.
Tao
,
C.
Zhang
,
H. L.
Ji
,
Y. P.
Wu
, and
J. H.
Qiu
, “
On the energy release rate extraction and mixed mode behavior of fatigue cohesive model
,”
Compos. Struct.
239
,
112038
(
2020
).
18.
F.
Li
,
Z. X.
Wen
,
Z. Y.
Wu
,
S. B.
Liu
,
Z. W.
Li
,
H. Q.
Pei
, and
Z. F.
Yue
, “
A safe fracture fatigue life prediction based on equivalent initial flaw size
,”
Int. J. Fatigue
142
,
105957
(
2021
).
19.
G. T.
Robertson
, “
The effects of shot size on the residual stresses resulting from shot peening
,”
The Shot Peener
11
,
46
48
(
1997
).
20.
I.
Chaieb
,
N.
Ben Moussa
,
N.
Ben Fredj
, and
N.
Ben Salah
, “
An innovative contactless finite element simulation of the shot peening process
,”
Int. J. Adv. Manuf. Technol.
113
,
2121
2136
(
2021
).
21.
A.
Bag
,
M.
Levesque
, and
M.
Brochu
, “
Effect of shot peening on short crack propagation in 300 M steel
,”
Int. J. Fatigue
131
,
105346
(
2020
).
22.
M.
Sakha
,
M.
Nejati
,
A.
Aminzadeh
,
S.
Ghouli
,
M. O.
Saar
, and
T.
Driesner
, “
On the validation of mixed-mode I/II crack growth theories for anisotropic rocks
,”
Int. J. Solids Struct.
241
,
111484
(
2022
).
23.
M.
Nejati
,
A.
Aminzadeh
,
F.
Amann
,
M. O.
Saar
, and
T.
Driesner
, “
Mode I fracture growth in anisotropic rocks: Theory and experiment
,”
Int. J. Solids Struct.
195
,
74
90
(
2020
).
24.
C. D. M.
Liljedahl
,
O.
Zanellato
,
M. E.
Fitzpatrick
,
J.
Lin
, and
L.
Edwards
, “
The effect of weld residual stresses and their re-distribution with crack growth during fatigue under constant amplitude loading
,”
Int. J. Fatigue
32
,
735
743
(
2010
).
25.
R. J.
Sun
,
Z. W.
Cao
,
Z. G.
Che
,
H. P.
Zhang
,
S. K.
Zou
,
J. F.
Wu
, and
W.
Guo
, “
A combined experimental-numerical study of residual stress and its relaxation on laser shock peened SiC particle-reinforced 2009 aluminum metal matrix composites
,”
Surf. Coat. Technol.
430
,
127988
(
2022
).
26.
X. D.
Ren
,
B. Q.
Chen
,
J. F.
Jiao
,
Y.
Yang
,
W. F.
Zhou
, and
Z. P.
Tong
, “
Fatigue behavior of double-sided laser shock peened Ti-6Al-4V thin blade subjected to foreign object damage
,”
Opt. Laser Technol.
121
,
105784
(
2020
).
27.
X. A.
Hu
,
J.
Zhao
,
X. F.
Nie
,
Y.
Jiang
, and
Y.
Zhang
, “
Fatigue resistance improvement on double-sided welded joints of a titanium alloy treated by laser shock peening
,”
J. Mater. Eng. Perform.
31
,
10304
10313
(
2022
).
28.
R. A.
Brockman
,
W. R.
Braisted
,
S. E.
Olson
,
R. D.
Tenaglia
,
A. H.
Clauer
,
K.
Langer
, and
M. J.
Shepard
, “
Prediction and characterization of residual stresses from laser shock peening
,”
Int. J. Fatigue
36
,
96
108
(
2012
).
29.
K.
Praveenkumar
,
P.
Mylavarapu
,
A.
Sarkar
,
E.
Isaac Samuel
,
A.
Nagesha
, and
S.
Swaroop
, “
Residual stress distribution and elevated temperature fatigue behaviour of laser peened Ti-6Al-4V with a curved surface
,”
Int. J. Fatigue
156
,
106641
(
2022
).
30.
S. B.
Li
,
W.
Liang
,
H. Z.
Yan
,
Y. H.
Wang
, and
C.
Gu
, “
Prediction of fatigue crack propagation behavior of AA2524 after laser shot peening
,”
Eng. Fract. Mech.
268
,
108477
(
2022
).
31.
A. K.
Bakare
,
A. A.
Shaikh
, and
S. S.
Kale
, “
Crack propagation behaviour in thin aluminium alloy sheet repaired with adhesively bonded CFRP patch
,”
Trans. Indian Inst. Met.
73
,
407
416
(
2020
).
32.
S.
Keller
,
M.
Horstmann
,
N.
Kashaev
, and
B.
Klusemann
, “
Crack closure mechanisms in residual stress fields generated by laser shock peening: A combined experimental-numerical approach
,”
Eng. Fract. Mech.
221
,
106630
(
2019
).
33.
S. T.
Sala
,
S.
Keller
,
S.
Chupakhin
,
D.
Pöltl
,
B.
Klusemann
, and
N.
Kashaev
, “
Effect of laser peen forming process parameters on bending and surface quality of Ti-6Al-4V sheets
,”
J. Mater. Process. Technol.
305
,
117578
(
2022
).
You do not currently have access to this content.