Laser cladding technology has attracted substantial attention in cutting-edge areas of metal surface repair and remanufacturing research. Nevertheless, excessive residual stress of cladding is the primary obstacle that hinders its practical application in aerospace, engineering machinery, and other industries. Herein, a comprehensive review of recent advances in the residual stress release in laser cladding is provided in three sections. The first section covers how various laser parameters and material characteristics affect residual stress. The second section discusses the effect and comparison of matching heat treatment methods before and after the laser cladding process on residual stress. The final section focuses on a brand-new concept and technique to release the residual stress during the cladding process via phase transformation. We hope that this review will be a reference for theoretical research and implementation of new laser cladding materials and technologies and present possible scientific solutions and prospects for the ideal reduction in residual stress during the cladding process.

1.
Y.
Song
,
H.
Murakami
, and
C.
Zhou
, “
Cyclic corrosion behavior of Pt/Ru-modified bond coatings exposed to NaCl plus water vapor at 1050 °C
,”
J. Mater. Sci. Technol.
26
,
217
222
(
2010
).
2.
R.
Johari Teymoori
,
M.
Shahidi
,
I.
Taji
,
Z.
Sharifalhoseini
, and
B.
Beidokhti
, “
A novel approach to prevent decarburisation through electroless plating
,”
Surf. Eng.
35
,
848
853
(
2019
).
3.
D.
Fantozzi
,
V.
Matikainen
,
M.
Uusitalo
,
H.
Koivuluoto
, and
P.
Vuoristo
, “
Chlorine-induced high temperature corrosion of inconel 625 sprayed coatings deposited with different thermal spray techniques
,”
Surf. Coat. Technol.
318
,
233
243
(
2017
).
4.
L.
von Fieandt
,
T.
Larsson
,
E.
Lindahl
,
O.
Bäcke
, and
M.
Boman
, “
Chemical vapor deposition of TiN on transition metal substrates
,”
Surf. Coat. Technol.
334
,
373
383
(
2018
).
5.
L.
Zhu
,
S.
Wang
,
H.
Pan
,
C.
Yuan
, and
X.
Chen
, “
Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology
,”
J. Manuf. Process.
49
,
344
354
(
2020
).
6.
S.
Wang
,
L.
Zhu
,
J. Y. H.
Fuh
,
H.
Zhang
, and
W.
Yan
, “
Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition
,”
Opt. Lasers Eng.
127
,
105950
(
2020
).
7.
X.
Su
,
W.
Tao
,
Y.
Chen
,
X.
Chen
, and
Z.
Tian
, “
Microstructural characteristics and formation mechanism of laser cladding of titanium alloys on carbon fiber reinforced thermoplastics
,”
Mater. Lett.
195
,
228
231
(
2017
).
8.
C. T.
Kwok
,
H. C.
Man
,
F. T.
Cheng
, and
K. H.
Lo
, “
Developments in laser-based surface engineering processes: with particular reference to protection against cavitation erosion
,”
Surf. Coat. Technol.
291
,
189
204
(
2016
).
9.
S.
Zhou
and
X.
Zeng
, “
Growth characteristics and mechanism of carbides precipitated in WC–Fe composite coatings by laser induction hybrid rapid cladding
,”
J. Alloys Compd.
505
,
685
691
(
2010
).
10.
Y.
Wang
,
S.
Zhao
,
W.
Gao
,
C.
Zhou
,
F.
Liu
, and
X.
Lin
, “
Microstructure and properties of laser cladding FeCrBSi composite powder coatings with higher Cr content
,”
J. Mater. Process. Technol.
214
,
899
905
(
2014
).
11.
X.
Jiao
,
C.
Wang
,
Z.
Gong
,
G.
Wang
,
H.
Sun
, and
H.
Yang
, “
Effect of Ti on T15M composite coating fabricated by laser cladding technology
,”
Surf. Coat.Technol.
325
,
643
649
(
2017
).
12.
S.
Singh
,
D. K.
Goyal
,
P.
Kumar
, and
A.
Bansal
, “
Laser cladding technique for erosive wear applications: A review
,”
Mater. Res. Express
7
,
012007
(
2020
).
13.
W.
Gao
,
C.
Chang
,
G.
Li
,
Y.
Xue
,
J.
Wang
,
Z.
Zhang
, and
X.
Lin
, “
Study on the laser cladding of FeCrNi coating
,”
Optik
178
,
950
957
(
2019
).
14.
F.
Wirth
and
K.
Wegener
, “
A physical modeling and predictive simulation of the laser cladding process
,”
Addit. Manuf.
22
,
307
319
(
2018
).
15.
G.
Zhang
,
W.
Sun
,
D.
Zhao
,
P.
Fan
,
F.
Guo
,
Y.
Huang
, and
P.
Li
, “
Effect of laser beam incidence angle on cladding morphology in laser cladding process
,”
J. Mech. Sci. Technol.
34
,
1531
1537
(
2020
).
16.
A.
Martinez Hurtado
,
J. A.
Francis
, and
N. P. C.
Stevens
, “
An assessment of residual stress mitigation strategies for laser clad deposits
,”
Mater. Sci. Technol.
32
,
1484
1494
(
2016
).
17.
E.
Capello
,
D.
Colombo
, and
B.
Previtali
, “
Repairing of sintered tools using laser cladding by wire
,”
J. Mater. Process. Technol.
164-165
,
990
1000
(
2005
).
18.
Z.
Zhao
,
J.
Chen
,
S.
Guo
,
H.
Tan
,
X.
Lin
, and
W.
Huang
, “
Influence of α/β interface phase on the tensile properties of laser cladding deposited Ti–6Al–4 V titanium alloy
,”
J. Mater. Sci. Technol.
33
,
675
681
(
2017
).
19.
S.
Sun
,
H.
Fu
,
S.
Chen
,
X.
Ping
,
K.
Wang
,
X.
Guo
,
J.
Lin
, and
Y.
Lei
, “
A numerical-experimental investigation of heat distribution, stress field and crack susceptibility in Ni60A coatings
,”
Opt. Laser Technol.
117
,
175
185
(
2019
).
20.
S. R.
Al-Sayed Ali
,
A. H. A.
Hussein
,
A. A. M. S.
Nofal
,
S. E. I.
Hasseb Elnaby
,
H. A.
Elgazzar
, and
H. A.
Sabour
, “
Laser powder cladding of Ti-6Al-4 V α/β alloy
,”
Materials
10
,
1
–16 (
2017
).
21.
W.
Guo
,
X.
Li
,
N.
Ding
,
G.
Liu
,
J.
He
,
L.
Tian
,
L.
Chen
, and
F.
Zaïri
, “
Microstructure characteristics and mechanical properties of a laser cladded Fe-based martensitic stainless steel coating
,”
Surf. Coat. Technol.
408
,
126795
(
2021
).
22.
A.
Narayanan
,
M.
Mostafavi
,
T.
Pirling
,
S.
Kabra
,
R.
Lewis
,
M. J.
Pavier
, and
M. J.
Peel
, “
Residual stress in laser cladded rail
,”
Tribol. Int.
140
,
105844
(
2019
).
23.
M.
Carraturo
,
B.
Lane
,
H.
Yeung
,
S.
Kollmannsberger
,
A.
Reali
, and
F.
Auricchio
, “
Numerical evaluation of advanced laser control strategies influence on residual stresses for laser powder bed fusion systems
,”
Integr. Mater. Manuf. Innovation.
9
,
435
445
(
2020
).
24.
H.
Liu
,
X.
Qin
,
M.
Wu
,
M.
Ni
, and
S.
Huang
, “
Numerical simulation of thermal and stress field of single track cladding in wide-beam laser cladding
,”
Int. J. Adv. Manuf. Technol.
104
,
3959
3976
(
2019
).
25.
Q.
Zhang
,
P.
Xu
,
G.
Zha
,
Z.
Ouyang
, and
D.
He
, “
Numerical simulations of temperature and stress field of Fe-Mn-Si-Cr-Ni shape memory alloy coating synthesized by laser cladding
,”
Optik
242
,
167079
(
2021
).
26.
A.
Riquelme
,
P.
Rodrigo
,
M. D.
Escalera-Rodríguez
, and
J.
Rams
, “
Analysis and optimization of process parameters in Al–SiCp laser cladding
,”
Opt. Lasers Eng.
78
,
165
173
(
2016
).
27.
C. J.
Han
,
Y.
Li
,
Q.
Wang
,
D. S.
Cai
,
Q. S.
Wei
,
L.
Yang
,
S. F.
Wen
,
J.
Liu
, and
Y. S.
Shi
, “
Titanium/hydroxyapatite (Ti/HA) gradient materials with quasi-continuous ratios fabricated by SLM: Material interface and fracture toughness
,”
Mater. Des.
141
,
256
266
(
2018
).
28.
O.
Kendall
,
P.
Fasihi
,
R.
Abrahams
,
A.
Paradowska
,
M.
Reid
,
Q.
Lai
,
C.
Qiu
, and
W.
Yan
, “
Application of a new alloy and post processing procedures for laser cladding repairs on hypereutectoid rail components
,”
Materials
15
,
1
–20 (
2022
).
29.
C.
Ding
,
X.
Cui
,
J.
Jiao
, and
P.
Zhu
, “
Effects of substrate preheating temperatures on the microstructure, properties, and residual stress of 12CrNi2 prepared by laser cladding deposition technique
,”
Materials
11
,
2401
(
2018
).
30.
Y. S.
Kim
,
E.
Choi
, and
W. J.
Kim
, “
Characterization of the microstructures and the shape memory properties of the Fe-Mn-Si-Cr-Ni-C shape memory alloy after severe plastic deformation by differential speed rolling and subsequent annealing
,”
Mater. Charact.
136
,
12
19
(
2018
).
31.
E.
Ghafoori
,
E.
Hosseini
,
C.
Leinenbach
,
J.
Michels
, and
M.
Motavalli
, “
Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening
,”
Mater. Des.
133
,
349
362
(
2017
).
32.
S.
Ghosh
and
J.
Choi
, “
Deposition pattern based thermal stresses in single-layer laser aided direct material deposition process
,”
J. Manuf. Sci. Eng.
129
,
319
332
(
2007
).
33.
C.
Liu
,
P.
Xu
,
S.
Li
, and
J.
Li
, “
Evading stress-property tradeoff in a SMA/PZT laser cladding coating via phase transformations
,”
Surf. Coat. Technol.
436
,
128313
(
2022
).
34.
B.
Bax
,
R.
Rajput
,
R.
Kellet
, and
M.
Reisacher
, “
Systematic evaluation of process parameter maps for laser cladding and directed energy deposition
,”
Addit. Manuf.
21
,
487
494
(
2018
).
35.
T.
Simson
,
A.
Emmel
,
A.
Dwars
, and
J.
Böhm
, “
Residual stress measurements on AISI 316L samples manufactured by selective laser melting
,”
Addit. Manuf.
17
,
183
189
(
2017
).
36.
C.
Guo
,
S.
He
,
H.
Yue
,
Q.
Li
, and
G.
Hao
, “
Prediction modelling and process optimization for forming multi-layer cladding structures with laser directed energy deposition
,”
Opt. Laser Technol.
134
,
106607
(
2021
).
37.
N.
Nazemi
and
R. J.
Urbanic
, “
A numerical investigation for alternative toolpath deposition solutions for surface cladding of stainless steel P420 powder on AISI 1018 steel substrate
,”
Int. J. Adv. Manuf. Technol.
96
,
4123
4143
(
2018
).
38.
M. S.
Ghorashi
,
G. H.
Farrahi
, and
M. R.
Movahhedy
, “
Considering cyclic plasticity to predict residual stresses in laser cladding of inconel 718 multi bead samples
,”
J. Manuf. Processes
42
,
149
158
(
2019
).
39.
F.
Yao
and
L.
Fang
, “
Thermal stress cycle simulation in laser cladding process of Ni-based coating on H13 steel
,”
Coatings
11
,
203
(
2021
).
40.
G.
Lian
,
M.
Yao
,
Y.
Zhang
, and
C.
Chen
, “
Analysis and prediction on geometric characteristics of multi-track overlapping laser cladding
,”
Int. J. Adv. Manuf. Technol.
97
,
2397
2407
(
2018
).
41.
S.
Mohammed
,
Z.
Zhang
, and
R.
Kovacevic
, “
Optimization of processing parameters in fiber laser cladding
,”
Int. J. Adv. Manuf. Technol.
111
,
2553
2568
(
2020
).
42.
W.
Ya
and
B.
Pathiraj
, “
Residual stresses in stellite 6 layers cladded on AISI 420 steel plates with a Nd: YAG laser
,”
J. Laser Appl.
30
,
032007
(
2018
).
43.
A.
Emamian
,
S. F.
Corbin
, and
A.
Khajepour
, “
Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings
,”
Surf. Coat. Technol.
205
,
2007
2015
(
2010
).
44.
J.
Pekkarinen
,
A.
Salminen
, and
V.
Kujanpää
, “
Laser cladding with scanning optics: Effect of scanning frequency and laser beam power density on cladding process
,”
J. Laser Appl.
26
,
032002
(
2014
).
45.
K.
Partes
and
G.
Sepold
, “
Modulation of power density distribution in time and space for high speed laser cladding
,”
J. Mater. Process. Technol.
195
,
27
33
(
2008
).
46.
M.
Song
,
L.
Wu
,
J.
Liu
, and
Y.
Hu
, “
Effects of laser cladding on crack resistance improvement for aluminum alloy used in aircraft skin
,”
Opt. Laser Technol.
133
,
106531
(
2021
).
47.
Y.
Javid
and
M.
Ghoreishi
, “
Thermo-mechanical analysis in pulsed laser cladding of WC powder on inconel 718
,”
Int. J. Adv. Manuf. Technol.
92
,
69
79
(
2017
).
48.
P.
Kattire
,
S.
Paul
,
R.
Singh
, and
W.
Yan
, “
Experimental characterization of laser cladding of CPM 9 V on H13 tool steel for die repair applications
,”
J. Manuf. Processes
20
,
492
499
(
2015
).
49.
Z.
Xiong
,
G. X.
Chen
, and
X. Y.
Zeng
, “
Effects of process variables on interfacial quality of laser cladding on aeroengine blade material GH4133
,”
J. Mater. Process. Technol.
209
,
930
936
(
2009
).
50.
R.
Li
,
W.
Yuan
,
H.
Yue
, and
Y.
Zhu
, “
Study on microstructure and properties of Fe-based amorphous composite coating by high-speed laser cladding
,”
Opt. Laser Technol.
146
,
107574
(
2022
).
51.
M.
Ma
,
W.
Xiong
,
Y.
Lian
,
D.
Han
,
C.
Zhao
, and
J.
Zhang
, “
Modeling and optimization for laser cladding via multi-objective quantum-behaved particle swarm optimization algorithm
,”
Surf. Coat. Technol.
381
,
125129
(
2020
).
52.
B.
Das
,
M.
Gopinath
,
A. K.
Nath
, and
P. P.
Bandyopadhyay
, “
Effect of cooling rate on residual stress and mechanical properties of laser remelted ceramic coating
,”
J. Eur. Ceram. Soc.
38
,
3932
3944
(
2018
).
53.
X.
Qiao
,
T.
Xia
, and
P.
Chen
, “
Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
,”
Chin. Phys. B.
30
,
018104
(
2021
).
54.
Y.
Cheng
,
C.
Cao
,
X.
Yang
,
J.
Zhou
,
J.
Yang
,
X.
Liang
, and
X.
Li
, “
Effects of laser energy density and path on residual stress of remanufactured key components for shield tunneling machine
,”
Mater. Chem. Phys.
290
,
126617
(
2022
).
55.
J. M.
Shi
,
N.
Ma
,
L. X.
Zhang
, and
J. C.
Feng
, “
Residual stress and fracture strength of brazed joint of ceramic and titanium alloy with the aid of laser deposited functionally graded material layers
,”
J. Manuf. Processes
34
,
495
502
(
2018
).
56.
Y.
Chew
,
J. H. L.
Pang
,
G.
Bi
, and
B.
Song
, “
Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads
,”
J. Mater. Process. Technol.
224
,
89
101
(
2015
).
57.
Y.
Feng
,
M.
Wu
,
Q.
Gao
,
Z.
Gao
, and
X.
Zhan
, “
Numerical simulation to study the effects of different laser cladding sequences on residual stress and deformation of Ti-6Al-4 V/WC
,”
J. Mater. Res.
36
,
3214
3225
(
2021
).
58.
Q.
Wang
,
J.
Shi
,
L.
Zhang
,
S.
Tsutsumi
,
J.
Feng
, and
N.
Ma
, “
Impacts of laser cladding residual stress and material properties of functionally graded layers on titanium alloy sheet
,”
Addit. Manuf.
35
,
101303
(
2020
).
59.
P. F.
Gardner
,
S. J.
Noone
,
R.
Bandyopadhyay
,
J. S.
Park
,
K.
Walker
, and
M. D.
Sangid
, “
Damage tolerance assessment of laser clad repairs of coarse grain Ti-6Al-4 V
,”
Exp. Mech.
62
,
1421
1436
(
2022
).
60.
R.
Cottam
,
V.
Luzin
,
Q.
Liu
,
E.
Mayes
,
Y. C.
Wong
,
J.
Wang
, and
M.
Brandt
, “
The role of microstructure in the stress relaxation and tempering of laser clad Ti-6Al-4 V
,”
Mater. Sci. Eng. A
601
,
65
69
(
2014
).
61.
T.
Roy
,
A.
Paradowska
,
R.
Abrahams
,
M.
Law
,
P.
Mutton
,
M.
Soodi
, and
W.
Yan
, “
Residual stress in laser cladded heavy-haul rails investigated by neutron diffraction
,”
J. Mater. Process. Technol.
278
,
116511
(
2020
).
62.
S.
Zhou
,
X.
Zeng
,
Q.
Hu
, and
Y.
Huang
, “
Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization
,”
Appl. Surf. Sci.
255
,
1646
1653
(
2008
).
63.
S.
Wei
,
G.
Wang
,
L.
Wang
, and
Y.
Rong
, “
Characteristics of microstructure and stresses and their effects on interfacial fracture behavior for laser-deposited maraging steel
,”
Mater. Des.
137
,
56
67
(
2018
).
64.
S.
Ghosh
and
J.
Choi
, “
Three-dimensional transient finite element analysis for residual stresses in the laser aided direct metal/material deposition process
,”
J. Laser Appl.
17
,
144
158
(
2005
).
65.
F.
Brückner
,
D.
Lepski
, and
E.
Beyer
, “
Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding
,”
J. Therm. Spray Technol.
16
,
355
373
(
2007
).
66.
P.
Xu
,
H.
Ju
,
C.
Lin
,
C.
Zhou
, and
D.
Pan
, “
In-situ synthesis of Fe-Mn-Si-Cr-Ni shape memory alloy functional coating by laser cladding
,”
Chin. Opt. Lett.
12
,
041403
(
2014
).
67.
J. X.
Fang
,
S. Y.
Dong
,
S. B.
Li
,
Y. J.
Wang
,
B. S.
Xu
,
J.
Li
,
B.
Liu
, and
Y. L.
Jiang
, “
Direct laser deposition as repair technology for a low transformation temperature alloy: Microstructure, residual stress, and properties
,”
Mater. Sci. Eng. A
748
,
119
127
(
2019
).
68.
J.
Tian
,
P.
Xu
, and
Q.
Liu
, “
Effects of stress-induced solid phase transformations on residual stress in laser cladding a Fe-Mn-Si-Cr-Ni alloy coating
,”
Mater. Des.
193
,
108824
(
2020
).
69.
C.
Liu
,
P.
Xu
,
D.
Zheng
, and
Q.
Liu
, “
Study on microstructure and properties of a Fe-based SMA/PZT composite coating produced by laser cladding
,”
J. Alloys Compd.
831
,
154813
(
2020
).
You do not currently have access to this content.