To improve the qualitative accuracy of foreign protein adulteration in milk powder, a novel method named multidimensional spectral information laser-induced breakdown spectroscopy (MSI-LIBS) was proposed, which fully mined the effective information in the spectra by integrating the absolute intensity, the first derivative spectra, and the ratio spectra. Compared with traditional LIBS, the performance of the models based on MSI-LIBS was significantly improved. The accuracy of the cross-validation set of support vector machine, k-nearest neighbor, and random subspace method-linear discriminant analysis models increased from 80.98%, 75.61%, and 79.25% to 85.17%, 79.32%, and 81.18%, respectively. The accuracy of the prediction set increased from 81.50%, 76.03%, and 79.07% to 85.82%, 79.74%, and 81.28%, respectively. Furthermore, the visualization results of t-distributed stochastic neighbor embedding also showed that there was a more obvious boundary between the spectra of different samples based on MSI-LIBS. Therefore, these results fully prove the effectiveness of MSI-LIBS in improving the performance of LIBS classification.

1.
M. E.
Thomas
,
J.
Scher
,
S.
Desobry-Banon
, and
S.
Desobry
, “
Milk powders ageing: Effect on physical and functional properties
,”
Crit. Rev. Food Sci. Nutr.
44
,
297
322
(
2004
).
2.
B.
Mickiewicz
and
K.
Volkava
, “
Global consumer trends for sustainable milk and dairy production
,”
VUZF Rev.
7
,
183
192
(
2022
).
3.
Y.
Wang
and
Q.
Liu
, “
Fast identification of powdered milk adulteration by generalized regression neural network algorithm
,” in
International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2021)
(
SPIE
,
2022
).
4.
X.
Qin
, “Analysis on the changes of China's food safety policy from the perspective of discontinuous equilibrium,” in 2022 5th International Conference on Economy Development and Social Sciences Research (EDSSR 2022), pp. 92-97.
5.
K.
Sharma
and
M.
Paradakar
, “
The melamine adulteration scandal
,”
Food Secur.
2
,
97
107
(
2010
).
6.
D.
Kennedy
,
R.
McCracken
,
A.
Cannavan
, and
S.
Hewitt
, “
Use of liquid chromatography–mass spectrometry in the analysis of residues of antibiotics in meat and milk
,”
J. Chromatogr. A
812
,
77
98
(
1998
).
7.
D.
Fletouris
,
N.
Botsoglou
,
I.
Psomas
, and
A.
Mantis
, “
Rapid determination of cholesterol in milk and milk products by direct saponification and capillary gas chromatography
,”
J. Dairy Sci.
81
,
2833
2840
(
1998
).
8.
N.
Khan
,
I. S.
Jeong
,
I. M.
Hwang
,
J. S.
Kim
,
S. H.
Choi
,
E. Y.
Nho
,
J. Y.
Choi
,
K. S.
Park
, and
K. S.
Kim
, “
Analysis of minor and trace elements in milk and yogurts by inductively coupled plasma-mass spectrometry (ICP-MS)
,”
Food Chem.
147
,
220
224
(
2014
).
9.
S. E.
Holroyd
, “
The use of near infrared spectroscopy on milk and milk products
,”
J. Near Infrared Spectrosc.
21
,
311
322
(
2013
).
10.
S. V.
Baadkar
,
M. S.
Mukherjee
, and
S. S.
Lele
, “
A study on genetic test of lactase persistence in relation to milk consumption in regional groups of India
,”
Genet. Test. Mol. Biomark.
16
,
1413
1418
(
2012
).
11.
Y.
Liu
,
J.
Pan
,
G.
Zhang
,
Z.
Li
,
Z.
Hu
,
Y.
Chu
,
L.
Guo
, and
C.
Lau
, “
Stable and ultrasensitive analysis of organic pollutants and heavy metals by dried droplet method with superhydrophobic-induced enrichment
,”
Anal. Chim. Acta
1151
,
338253
(
2021
).
12.
S.
Sheta
,
M. S.
Afgan
,
Z.
Hou
,
S.
Yao
,
L.
Zhang
,
Z.
Li
, and
Z.
Wang
, “
Coal analysis by laser-induced breakdown spectroscopy: A tutorial review
,”
J. Anal. At. Spectrom.
34
,
1047
1082
(
2019
).
13.
L.-B.
Guo
,
D.
Zhang
,
L.-X.
Sun
,
S.-C.
Yao
,
L.
Zhang
,
Z.-Z.
Wang
,
Q.-Q.
Wang
,
H.-B.
Ding
,
Y.
Lu
, and
Z.-Y.
Hou
, “
Development in the application of laser-induced breakdown spectroscopy in recent years: A review
,”
Front. Phys.
16
,
22500
(
2021
).
14.
A. K.
Knight
,
N. L.
Scherbarth
,
D. A.
Cremers
, and
M. J.
Ferris
, “
Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration
,”
Appl. Spectrosc.
54
,
331
340
(
2000
).
15.
N.
Li
,
J.
Guo
,
J.
Song
,
W.
Ye
,
Y.
Lu
,
Y.
Tian
, and
R.
Zheng
, “
Comprehensive effects of oceanic pressure and temperature on in situ LIBS signals
,”
J. Anal. At. Spectrom.
36
,
2660
2668
(
2021
).
16.
Y.
Liu
,
J.
Pan
,
Z.
Hu
,
Y.
Chu
,
M. S.
Khan
,
K.
Tang
,
L.
Guo
, and
C.
Lau
, “
Stability improvement for dried droplet pretreatment by suppression of coffee ring effect using electrochemical anodized nanoporous tin dioxide substrate
,”
Microchim. Acta
187
,
664
(
2020
).
17.
M.
Markiewicz-Keszycka
,
X.
Cama-Moncunill
,
M. P.
Casado-Gavalda
,
Y.
Dixit
,
R.
Cama-Moncunill
,
P. J.
Cullen
, and
C.
Sullivan
, “
Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review
,”
Trends Food Sci. Technol.
65
,
80
93
(
2017
).
18.
F.
Xu
,
Z.
Hao
,
L.
Huang
,
M.
Liu
,
T.
Chen
,
J.
Chen
,
L.
Zhang
,
H.
Zhou
, and
M.
Yao
, “
Comparative identification of citrus huanglongbing by analyzing leaves using laser-induced breakdown spectroscopy and near-infrared spectroscopy
,”
Appl. Phys. B
126
,
43
(
2020
).
19.
C.
Zhang
,
T.
Shen
,
F.
Liu
, and
Y.
He
, “
Identification of coffee varieties using laser-induced breakdown spectroscopy and chemometrics
,”
Sensors
18
,
95
(
2018
).
20.
G.
Bilge
,
B.
Sezer
,
K. E.
Eseller
,
H.
Berberoğlu
,
H.
Köksel
, and
I. H.
Boyacı
, “
Determination of Ca addition to the wheat flour by using laser-induced breakdown spectroscopy (LIBS)
,”
Eur. Food Res. Technol.
242
,
1685
1692
(
2016
).
21.
G.
Bilge
,
B.
Sezer
,
K. E.
Eseller
,
H.
Berberoglu
,
A.
Topcu
, and
I. H.
Boyaci
, “
Determination of whey adulteration in milk powder by using laser induced breakdown spectroscopy
,”
Food Chem.
212
,
183
188
(
2016
).
22.
S.
Moncayo
,
S.
Manzoor
,
J. D.
Rosales
,
J.
Anzano
, and
J. O.
Caceres
, “
Qualitative and quantitative analysis of milk for the detection of adulteration by laser induced breakdown spectroscopy (LIBS)
,”
Food Chem.
232
,
322
328
(
2017
).
23.
D.
Zhang
,
J.
Nie
,
X.
Niu
,
F.
Chen
,
Z.
Hu
,
X.
Wen
,
Y.
Li
, and
L.
Guo
, “
Time-resolved spectral-image laser-induced breakdown spectroscopy for precise qualitative and quantitative analysis of milk powder quality by fully excavating the matrix information
,”
Food Chem.
386
,
132763
(
2022
).
24.
K.
Wiggins
,
R.
Palmer
,
W.
Hutchinson
, and
P.
Drummond
, “
An investigation into the use of calculating the first derivative of absorbance spectra as a tool for forensic fibre analysis
,”
Sci. Justice
47
,
9
18
(
2007
).
25.
S.
Huang
,
N.
Cai
,
P. P.
Pacheco
,
S.
Narrandes
,
Y.
Wang
, and
W.
Xu
, “
Applications of support vector machine (SVM) learning in cancer genomics
,”
Cancer Genom. Proteom.
15
,
41
51
(
2018
).
26.
V.
Jakkula
,
Tutorial on Support Vector Machine (SVM)
(
School of EECS, Washington State University
,
2006
), Vol. 37, p.
3
.
27.
G.
Guo
,
H.
Wang
,
D.
Bell
,
Y.
Bi
, and
K.
Greer
, “
KNN model-based approach in classification
,” in
OTM Confederated International Conferences “On the Move to Meaningful Internet Systems”
(
Springer
,
2003
).
28.
Z.
Deng
,
X.
Zhu
,
D.
Cheng
,
M.
Zong
, and
S.
Zhang
, “
Efficient kNN classification algorithm for big data
,”
Neurocomputing
195
,
143
148
(
2016
).
29.
C.
Yan
,
X.
Chang
,
M.
Luo
,
Q.
Zheng
,
X.
Zhang
,
Z.
Li
, and
F.
Nie
, “
Self-weighted robust LDA for multiclass classification with edge classes
,”
ACM Trans. Intell. Syst. Technol.
12
,
1
19
(
2020
).
30.
Y.
Chu
,
F.
Chen
,
Z.
Sheng
,
D.
Zhang
,
S.
Zhang
,
W.
Wang
,
H.
Jin
,
J.
Qi
, and
L.
Guo
, “
Blood cancer diagnosis using ensemble learning based on a random subspace method in laser-induced breakdown spectroscopy
,”
Biomed. Opt. Express
11
,
4191
4202
(
2020
).
31.
A. Y. L.
Yew
and
M. S. M.
Rahim
, “
Feature extraction of Alzheimer's disease classification based on principal component and random subspace discriminant analysis
,”
J. Theor. Appl. Inf. Technol.
99
, 61 (
2021
).
32.
D.
Kobak
and
P.
Berens
, “
The art of using t-SNE for single-cell transcriptomics
,”
Nat. Commun.
10
,
5416
(
2019
).
33.
F.
Anowar
,
S.
Sadaoui
, and
B.
Selim
, “
Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)
,”
Comput. Sci. Rev.
40
,
100378
(
2021
).
You do not currently have access to this content.