The collinear long-short double-pulse laser-induced breakdown spectroscopy (LS-DP-LIBS) was employed in the detection of underwater copper samples. Discrete emission lines were obtained using LS-DP-LIBS with an appropriate delay between two pulses, while characteristic emission lines were covered by continuous background and noise using LIBS with a single pulse. In the condition of LS-DP-LIBS, signal characteristics of the measured spectra at different experimental parameters including long-pulse width, lens-to-sample distance (LTSD), and long-pulse energy have been investigated to determine the optimal condition. The results indicated that the long-pulse width and the long-pulse energy were closely related to the formation of a cavitation bubble, thus affecting the plasma state and signal characteristics for underwater measurement. The parameter of the LTSD imposed an effect on the spectral signal through changing the ablation mass of the sample and the plasma temperature. The experimental results demonstrated the feasibility of the underwater measurement of metal samples using the collinear LS-DP-LIBS and showed a significant signal improvement through this method. With further development, it is of great potential to apply this new method based on LIBS to ocean exploration.

1.
J.
Laserna
,
J. M.
Vadillo
, and
P.
Purohit
, “
Laser-induced breakdown spectroscopy (LIBS): Fast, effective, and agile leading edge analytical technology
,”
Appl. Spectrosc.
72
,
35
50
(
2018
).
2.
F. J.
Fortes
and
J. J.
Laserna
, “
The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon
,”
Spectrochim. Acta Part B At. Spectrosc.
65
,
975
990
(
2010
).
3.
A.
De Giacomo
,
M.
Dell'Aglio
,
O.
De Pascale
, and
M.
Capitelli
, “
From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples
,”
Spectrochim. Acta Part B At. Spectrosc.
62
,
721
738
(
2007
).
4.
P. K.
Kennedy
,
D. X.
Hammer
, and
B. A.
Rockwell
, “
Laser-induced breakdown in aqueous media
,”
Prog. Quantum Electron.
21
,
155
248
(
1997
).
5.
C. S.
Peel
,
X.
Fang
, and
S. R.
Ahmad
, “
Dynamics of laser-induced cavitation in liquid
,”
Appl. Phys. A
103
,
1131
1138
(
2011
).
6.
P.
Yaroshchyk
,
R. J. S.
Morrison
,
D.
Body
, and
B. L.
Chadwick
, “
Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS
,”
Spectrochim. Acta Part B At. Spectrosc.
60
,
1482
1485
(
2005
).
7.
Z.
Chen
,
H.
Li
,
M.
Liu
, and
R.
Li
, “
Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates
,”
Spectrochim. Acta Part B At. Spectrosc.
63
,
64
68
(
2008
).
8.
J.
Wu
,
Y.
Fu
,
Y.
Li
, Y. Lu,
Z.
Cui
, and
R.
Zheng
, “
Detection of metal ions in water solution by laser induced breakdown spectroscopy
,”
Spectrosc. Spectr. Anal.
28
,
1979
1982
(
2008
).
9.
S.
Zhong
,
Y.
Lu
,
K.
Cheng
,
J.
Xiu
, and
R.
Zheng
, “
Ultrasonic nebulizer assisted LIBS for detection of trace metal elements dissolved in water
,”
Spectrosc. Spectr. Anal
31
,
1458
1462
(
2011
).
10.
Y.
Lu
,
Y.
Li
,
J.
Wu
,
S.
Zhong
, and
R.
Zheng
, “
Guided conversion to enhance cation detection in water using laser-induced breakdown spectroscopy
,”
Appl. Opt.
49
,
C75
C79
(
2010
).
11.
W. L.
Yip
and
N. H.
Cheung
, “
Analysis of aluminum alloys by resonance-enhanced laser-induced breakdown spectroscopy: How the beam profile of the ablation laser and the energy of the dye laser affect analytical performance
,”
Spectrochim. Acta Part B At. Spectrosc.
64
,
315
322
(
2009
).
12.
V.
Hohreiter
and
D. W.
Hahn
, “
Dual-pulse laser induced breakdown spectroscopy: Time-resolved transmission and spectral measurements
,”
Spectrochim. Acta Part B At. Spectrosc.
60
,
968
974
(
2005
).
13.
O.
Samek
,
A.
Kurowski
,
S.
Kittel
,
S.
Kukhlevsky
, and
R.
Hergenroder
, “
Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study
,”
Spectrochim. Acta Part B At. Spectrosc.
60
,
1225
1229
(
2005
).
14.
A.
Kumar
,
F. Y.
Yueh
, and
J. P.
Singh
, “
Double-pulse laser-induced breakdown spectroscopy with liquid jets of different thicknesses
,”
Appl. Opt.
42
,
6047
6051
(
2003
).
15.
A. P. M.
Michel
and
A. D.
Chave
, “
Double pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: Interrelationship of gate delay, pulse energies, interpulse delay, and pressure
,”
Appl. Opt.
47
,
G131
G143
(
2008
).
16.
S.
Koch
,
W.
Garen
,
M.
Muller
, and
W.
Neu
, “
Detection of chromium in liquids by laser induced breakdown spectroscopy (LIBS)
,”
Appl. Phys. A
79
,
1071
1073
(
2004
).
17.
K. A.
Tereszchuk
,
J. M.
Vadillo
, and
J. J.
Laserna
, “
Depth profile analysis of layered samples using glow discharge assisted laser-induced breakdown spectrometry (GD-LIBS)
,”
Spectrochim. Acta Part B At. Spectrosc.
64
,
378
383
(
2009
).
18.
A. E.
Pichahchy
,
D. A.
Cremers
, and
M. J.
Ferris
, “
Elemental analysis of metals under water using laser-induced breakdown spectroscopy
,”
Spectrochim. Acta Part B At. Spectrosc.
52
,
25
39
(
1997
).
19.
G.
Cristoforetti
,
S.
Legnaioli
,
V.
Palleschi
,
A.
Salvetti
, and
E.
Tognoni
, “
Effect of target composition on the emission enhancement observed in double-pulse laser-induced breakdown spectroscopy
,”
Spectrochim. Acta Part B At. Spectrosc.
63
,
312
323
(
2008
).
20.
A.
De Giacomo
,
M.
Dell'Aglio
,
F.
Colao
,
R.
Fantoni
, and
V.
Lazic
, “
Double-pulse LIBS in bulk water and on submerged bronze samples
,”
Appl. Surf. Sci.
247
,
157
162
(
2005
).
21.
A.
De Giacomo
,
M.
Dell'Aglio
,
A.
Casavola
,
G.
Colonna
,
O.
De Pascale
, and
M.
Capitelli
, “
Elemental chemical analysis of submerged targets by double-pulse laser-induced breakdown spectroscopy
,”
Anal. Bioanal. Chem.
385
,
303
311
(
2006
).
22.
A.
De Giacomo
,
M.
Dell'Aglio
,
F.
Colao
, and
R.
Fantoni
, “
Double pulse laser produced plasma on metallic target in seawater: Basic aspects and analytical approach
,”
Spectrochim. Acta Part B At. Spectrosc.
59
,
1431
1438
(
2004
).
23.
M.
Lawrence-Snyder
,
J.
Scaffidi
,
S. M.
Angel
,
A. P. M.
Michel
, and
A. D.
Chave
, “
Laser-induced breakdown spectroscopy of high-pressure bulk aqueous solutions
,”
Appl. Spectrosc.
60
,
786
790
(
2006
).
24.
A. P. M.
Michel
,
M.
Lawrence-Snyder
,
S. M.
Angel
, and
A. D.
Chave
, “
Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: Evaluation of key measurement parameters
,”
Appl. Opt.
46
,
2507
2515
(
2007
).
25.
A. P. M.
Michel
and
A. D.
Chave
, “
Single pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: Interrelationship of gate delay and pulse energy
,”
Appl. Opt.
47
,
G122
G130
(
2008
).
26.
T.
Sakka
,
H.
Oguchi
,
S.
Masai
, and
Y. H.
Ogata
, “
Quasi nondestructive elemental analysis of solid surface in liquid by long-pulse laser ablation plume spectroscopy
,”
Chem. Lett.
36
,
508
509
(
2007
).
27.
T.
Sakka
,
H.
Oguchi
,
S.
Masai
,
K.
Hirata
,
Y. H.
Ogata
,
M.
Saeki
, and
H.
Ohba
, “
Use of a long-duration ns pulse for efficient emission of spectral lines from the laser ablation plume in water
,”
Appl. Phys. Lett.
88
,
061120
(
2006
).
28.
T.
Sakka
,
S.
Masai
,
K.
Fukami
, and
Y. H.
Ogata
, “
Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid
,”
Spectrochim. Acta Part B At. Spectrosc.
64
,
981
985
(
2009
).
29.
Z.
Wang
,
Y.
Deguchi
,
R.
Liu
,
A.
Ikutomo
,
Z.
Zhang
,
D.
Chong
,
J.
Yan
,
J.
Liu
, and
F.-J.
Shiou
, “
Emission characteristics of laser-induced plasma using collinear long and short dual-pulse laser-induced breakdown spectroscopy (LIBS)
,”
Appl. Spectrosc.
71
,
2187
2198
(
2017
).
30.
M.
Cui
,
Y.
Deguchi
,
Z.
Wang
,
Y.
Fujita
,
R.
Liu
,
F.-J.
Shiou
, and
S.
Zhao
, “
Enhancement and stabilization of plasma using collinear long-short double-pulse laser-induced breakdown spectroscopy
,”
Spectrochim. Acta Part B At. Spectrosc.
142
,
14
22
(
2018
).
31.
M.
Cui
,
Y.
Deguchi
,
Z.
Wang
,
S.
Tanaka
,
Y.
Fujita
, and
S.
Zhao
, “
Improved analysis of manganese in steel samples using collinear long-short double pulse laser-induced breakdown spectroscopy (LIBS)
,”
Appl. Spectrosc.
73
,
152
162
(
2019
).
32.
M.
Cui
,
Y.
Deguchi
,
Z.
Wang
,
S.
Tanaka
,
B.
Xue
,
C.
Yao
, and
D.
Zhang
, “
Fraunhofer-type signal for underwater measurement of copper sample using collinear long-short double-pulse laser-induced breakdown spectroscopy
,”
Spectrochim. Acta Part B At. Spectrosc.
168
,
105873
(
2020
).
33.
M.
Cui
,
Y.
Deguchi
,
G.
Li
,
Z.
Wang
,
H.
Guo
,
Z.
Qin
,
C.
Yao
, and
D.
Zhang
, “
Determination of manganese in submerged steel using Fraunhofer-type line generated by long-short double-pulse laser-induced breakdown spectroscopy
,”
Spectrochim. Acta Part B At. Spectrosc.
180
,
106210
(
2021
).
34.
M.
Cui
,
Y.
Deguchi
,
Z.
Wang
,
C.
Yao
,
L.
Tan
, and
D.
Zhang
, “
Signal improvement for underwater measurement of metal samples using collinear long-short double-pulse laser induced breakdown spectroscopy
,”
Front. Phys.
8
,
237
(
2020
).
35.
See https://physics.nist.gov/PhysRefData/ASD/lines_form.html for “NIST Standard Reference Database 78: National Institute of Standards and Technology [DB],” [2023-3-2].
36.
M.
Gaft
,
L.
Nagli
, and
I.
Gornushkin
, “
Laser-induced breakdown spectroscopy of Zr in short ultraviolet wavelength range
,”
Spectrochim. Acta Part B At. Spectrosc.
85
,
93
99
(
2013
).
37.
P. C.
Diggle
,
K. A.
Gehring
, and
R. M.
Macfarlane
, “
Atomic-absorption and emission in laser-produced plasmas
,”
Phys. Status Solidi A
34
,
K13
K16
(
1976
).
38.
J. Song, J. Guo, Y. Tian, Y. Lu, and R. Zheng, “
Effect of LFTSD on underwater laser induced breakdown spectroscopy with different laser energies
,”
Proc. SPIE
10461, 104611N (2017).
39.
V.
Lazic
,
S.
Jovicevic
,
R.
Fantoni
, and
F.
Colao
, “
Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy
,”
Spectrochim. Acta Part B At. Spectrosc.
62
,
1433
1442
(
2007
).
You do not currently have access to this content.