This paper represents nondestructive quality monitoring technique using optical coherence tomography (OCT). It addresses online monitoring of weld depth during laser beam oscillation welding and aims at the application in joining cells in large battery assemblies. The weld depth was continuously detected with OCT while the OCT beam position was adjusted highly dynamically in accordance with the scanning optics position. By displacing the OCT measurement beam according to the current machining direction, the correlation between the position of the laser beam in an oscillating circular pattern along the circular feed direction and the periodic fluctuations of the measured weld depth was explored. It was found that the deepest part of the keyhole is located at the trailing position of the laser beam. This effect can be attributed to the large heat input due to the overlapping circular movements. The results confirm once again that instant weld depth monitoring with OCT ensures superior weld quality.

1.
H.
Ramiarison
,
N.
Barka
, and
S.
Amira
, “
Optimization of parameters in laser welding of aluminum alloy 5052-H32 using beam oscillation technique for mechanical performance improvement
,”
Int. J. Lightweight Mater. Manuf.
5
,
470
483
(
2022
).
2.
Ph. A.
Schmidt
,
M.
Schweier
, and
M. F.
Zaeh
, “
Joining of lithium-ion batteries using laser beam welding: Electrical losses of welded aluminum and copper joints” in ICALEO 2012 Congress Proceedings: 31st International Congress on Applications of Lasers & Electro-Optics
, Anaheim, CA, 23–27 September2012 (
Laser Institute of America
,
2012
), p.
915
.
3.
Ph. A.
Schmidt
, “
Laserstrahlschweißen elektrischer Kontakte von LithiumIonen-Batterien in Elektro- und Hybridfahrzeugen
,”
Ph. D. thesis
(
Technical University of Munich
,
2015
).
4.
M. J.
Brand
,
Ph. A.
Schmidt
,
M. F.
Zaeh
, and
A.
Jossen
, “
Welding techniques for battery cells and resulting electrical contact resistances
,”
J. Energy Storage
1
,
7
14
(
2015
).
5.
S.
Kang
and
J.
Shin
, “
Laser beam oscillation welding of aluminum alloy using the spatially modulated beam by diffractive optical element (DOE)
,”
J. Manuf. Processes
66
,
387
396
(
2021
).
6.
P. L.
Busuttil
and
Comau LLC
, “
Laser welding apparatus and method for high temperature gradient cooling alloys
,” U.S. patent 5665255A (
9 September 1997
).
7.
G.
Chen
,
B.
Wang
,
S.
Mao
,
P.
Zhong
, and
J.
He
, “
Research on the “∞”-shaped laser scanning welding process for aluminum alloy
,”
Opt. Laser Technol.
115
,
32
41
(
2019
).
8.
Y.
Ji
,
A. W.
Grindal
,
P. J.
Webster
, and
J. M.
Fraser
, “
Real-time depth monitoring and control of laser machining through scanning beam delivery system
,”
J. Phys. D: Appl. Phys.
48
,
155301
–155307 (
2015
).
9.
L.
Chen
,
Ch.
Wang
,
G.
Mi
, and
X.
Zhang
, “
Effects of laser oscillating frequency on energy distribution, molten pool morphology and grain structure of AA6061/AA5182 aluminum alloys lap welding
,”
J. Mater. Res. Technol.
15
,
3133
3148
(
2021
).
10.
R. P.
Martukanitz
,
I.
Stol
,
J. F.
Tressler
, and
C. J.
Warren
, “
Development of the laser stir welding process for aluminum laser beam welding,” in ICALEO 2005 Congress Proceedings: Laser Materials Processing Conference
, Miami, FL, 31 October–3 November 2005 (
Laser Institute of America
,
2005
), p.
1208
.
11.
Z.
Wang
,
J. P.
Oliveira
,
Z.
Zeng
,
X.
Bu
,
B.
Peng
, and
X.
Shao
, “
Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties
,”
Opt. Laser Technol.
111
,
58
65
(
2019
).
12.
F.
Fetzer
,
M.
Sommer
,
R.
Weber
,
J. P.
Weberpals
, and
T.
Graf
, “
Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi
,”
Opt. Lasers Eng.
108
,
68
77
(
2018
).
13.
L.
Wang
,
M.
Gao
,
C.
Zhang
, and
X.
Zeng
, “
Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy
,”
Mater. Des.
108
,
707
717
(
2016
).
14.
M.
Sokolov
,
P.
Franciosa
,
T.
Sun
,
D.
Ceglarek
,
V.
Dimatteo
,
A.
Ascari
,
A.
Fortunato
, and
F.
Nagel
, “
Applying optical coherence tomography for weld depth monitoring in remote laser welding of automotive battery tab connectors
,”
J. Laser Appl.
33
,
012028
(
2021
).
15.
P. J.
Webster
,
L. G.
Wright
,
Y.
Ji
,
C. M.
Galbraith
,
A. W.
Kinross
,
C.
van Vlack
, and
J. M.
Fraser
, “
Automatic laser welding and milling with in situ inline coherent imaging
,”
Opt. Lett.
39
,
6217
6220
(
2014
).
16.
N.
Deyneka-Dupriez
and
A.
Denkl
,
For a Better World: OCT Unlocks Real-Time Quality Control During Oscillation Welding
(
Laser Systems Europe
,
Autumn
,
2020
).
17.
N. D.
Dupriez
and
A.
Denkl
, “
Advances of OCT technology for laser beam processing
,”
Laser Tech. J.
14
,
34
38
(
2017
).
18.
M.
Boley
,
F.
Fetzer
,
R.
Weber
, and
T.
Graf
, “
Statistical evaluation method to determine the laser welding depth by optical coherence tomography
,”
Opt. Lasers Eng.
119
,
56
64
(
2019
).
19.
T.
Bautze
and
M.
Kogel-Hollacher
, “
Keyhole depth is just a distance: The IDM sensor improves laser welding processes
,”
Laser Tech. J.
11
,
39
43
(
2014
).
20.
S.
Lowman
,
B. M.
Williams
,
J.
Zhang
,
Y. C.
Shen
, and
Y.
Zheng
, “
Scan-Less line field optical coherence tomography, with automatic image segmentation, as a measurement tool for automotive coatings
,”
Appl. Sci.
7
,
351
364
(
2017
).
21.
N.
Deyneka Dupriez
, “OCT produces a better weld,” Industrial Laser Solutions 34, 21–23 (2019).
22.
N.
Deyneka-Dupriez
, “
OCT for industrial laser welding
,”
J. Jpn. Laser Process. Soc.
28
,
19
22
(
2021
).
23.
F.
Dorsch
,
W.
Dubitzky
,
L.
Effing
,
P.
Haug
,
J.
Hermani
, and
S.
Plasswich
, “
Capillary depth measurement for process control
,”
Proc. SPIE
10097
,
1009708
(
2017
).
24.
Ch. M.
Galbraith
,
J. A.
Kanko
,
B. W.
Krupicz
,
P.
Singh
,
D. W.
Tesselaar
, and
P. J. L.
Webster
, “
Wobble-welding of copper and aluminum alloys with inline coherent imaging,” in ICALEO 2018 Congress Proceedings: the International Congress on Applications of Lasers & Electro-Optics
, Orlando, FL, 14–18 October2018 (
Laser Institute of America
,
2018
), p.
406
.
25.
M.
Sokolov
,
P.
Franciosa
,
R.
Al Botros
, and
D.
Ceglarek
, “
Keyhole mapping to enable closed-loop weld penetration depth control for remote laser welding of aluminium components using optical coherence tomography
,”
J. Laser Appl.
32
,
032004
(
2020
).
26.
P.
Webster
,
L.
Wright
,
K.
Mortimer
,
B.
Leung
,
J.
Yu
, and
J.
Fraser
, “
Automatic real-time guidance of laser machining with inline coherent imaging
,”
J. Laser Appl.
23
,
022001
(
2011
).
27.
P.
Webster
,
L.
Wright
,
Y.
Galbraith
,
A.
Kinross
,
C.
Van Vlack
, and
J.
Fraser
, “
Automatic laser welding and milling with in situ inline coherent imaging
,”
Opt. Lett.
39
,
6217
6220
(
2014
).
28.
M.
Kogel-Hollacher
,
M.
Schoenleber
,
Th.
Bautze
,
R.
Moser
, and
M.
Strebel
, “
Inline monitoring of laser processing: New industrial results with the low coherence interferometry sensor approach
,”
Proc. SPIE
9741
,
97410R
(
2016
).
29.
Ch.
Mittelstädt
,
Th.
Mattulat
,
Th.
Seefeld
, and
M.
Kogel-Hollacher
, “
Novel approach for weld depth determination using optical coherence tomography measurement in laser deep penetration welding of aluminum and steel
,”
J. Laser Appl.
31
,
022007
(
2019
).
30.
J.
Blecher
,
C.
Galbraith
,
C.
Van Vlack
,
T.
Palmer
,
J.
Fraser
,
P.
Webster
, and
T.
DebRoy
, “
Real time monitoring of laser beam welding keyhole depth by laser interferometry
,”
Sci. Technol. Weld. Join.
19
,
560
564
(
2014
).
31.
M.
Schmoeller
,
Ch.
Stadter
,
St.
Liebl
, and
M. F.
Zaeh
, “
Inline weld depth measurement for high brilliance laser beam sources using optical coherence tomography
,”
J. Laser Appl.
31
,
022409
(
2019
).
32.
M.
Kogel-Hollacher
,
M.
Schoenleber
, and
Th.
Bautze
, “
Inline coherent imaging of laser processing - A new sensor approach heading for industrial applications,” in LANE 2014 Conference Proceedings: 8th International Conference on Photonic Technologies
, Fuerth, Germany, 8–11 September2014 (
Bayerisches Laserzentrum GmbH
,
2014
).
33.
F.
Fetzer
,
M.
Boley
,
R.
Weber
, and
T.
Graf
, “
Comprehensive analysis of the capillary depth in deep penetration laser welding
,”
Proc. SPIE
10097
,
1009709
(
2017
).
34.
A. J.
Birnesser
, “
Prozessregelung beim laserstrahlschweißen
,”
Ph. D. thesis
(
Herbert Utz Verlag, University of Stuttgart
,
2011
).
35.
E.
Lessmueller
,
Ch.
Truckenbrodt
,
K.
Werner
, and
Lessmüller
Lasertechnik GmbH
, “
Measurement device for a laser processing system and a method for performing position measurements by means of a measurement beam on a workpiece
,” U.S. Patent US9784562B2 (
10 October 2017
).
36.
I.
Stol
,
R. P.
Martukanitz
, and Alcoa Inc., “
The penn state research foundation. Laser welding with beam oscillation
,” U.S. Patent US6740845 (
25 May 2004
).
37.
J.
Li
,
Y.
Liu
,
Y.
Tao
,
Q.
Zhang
,
K.
Kang
,
Q.
Sun
, and
Q.
Sun
, “
Analysis of vapor plume and keyhole dynamics in laser welding stainless steel with beam oscillation
,”
Infrared Phys. Technol.
113
,
103536
(
2021
).
38.
T.
Solchenbach
and
P.
Plapper
, “
Combined laser beam braze-welding process for fluxless Al-Cu connections” in COMA 2013 Conference Proceedings: the International Conference on Competitive Manufacturing
, Sellenbosch, South Africa, 30 January 2013 – 1 February 2013 (Dept. of Industrial Engineering Stellenbosch University,
2013
), pp.
131
136
.
39.
T.
Solchenbach
and
P.
Plapper
, “
Mechanical characteristics of laser braze-welded aluminium–copper connections“
,”
Opt. Laser Technol.
54
,
249
256
(
2013
).
40.
A.
Mahrle
and
E.
Beyer
, “
Modeling and simulation of the energy deposition in laser beam welding with oscillatory beam deflection,” in ICALEO 2007 Congress Proceedings: International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing
, Orlando, FL,
29 October–1 November 2007
(
Laser Institute of America
,
2007
), p.
1805
.
41.
C.
Chen
,
H.
Zhou
,
Ch.
Wang
,
L.
Liu
,
Y.
Zhang
, and
K.
Zhang
, “
Laser welding of ultra-high strength steel with different oscillating modes
,”
J. Manuf. Process.
68
,
761
769
(
2021
).
42.
Xi
Chen
,
Nan
Jiang
,
Meng
Jiang
,
Yang
Du
,
Shengchong
Ma
, and
Yuan
Chen
, “
Numerical investigation of asymmetric weld fusion geometry in laser welding of aluminium alloy with beam oscillation
,”
Sci. Technol. Weld. Join.
27
,
595
605
(
2022
).
43.
D.
Dittrich
,
A.
Jahn
,
J.
Standfuss
, and
E.
Beyer
, “
Laser beam welding of atmosphere aluminum die cast material using high frequency beam oscillation and brilliant beam sources
,”
J. Laser Appl.
29
,
022425
(
2017
).
44.
M.
Hummel
,
A.
Häusler
, and
A.
Gillner
, “
High-precision adjustment of welding depth during laser micro welding of copper using superpositioned spatial and temporal power modulation
,”
J. Manuf. Mater. Process.
5
,
127
–140 (
2021
).
45.
M.
Kraetzsch
,
J.
Standfuss
,
A.
Klotzbach
,
J.
Kaspar
,
B.
Brenner
, and
E.
Beyer
, “
Laser beam welding with high-frequency beam oscillation: Welding of dissimilar materials with brilliant fiber lasers
,”
Phys. Procedia
12
,
142
149
(
2011
).
46.
L.
Wang
,
M.
Gao
, and
X.
Zeng
, “
Experiment and prediction of weld morphology for laser oscillating welding of AA6061 aluminium alloy
,”
Sci. Technol. Weld. Join.
24
,
334
341
(
2018
).
47.
M.
Chelladurai Asirvatham
,
S.
Collins
, and
I.
Masters
, “
Laser wobble welding of steel to aluminium busbar joints for Li-ion battery packs
,”
Opt. Laser Technol.
151
,
108000
(
2022
).
48.
V.
Kancharla
,
M.
Grupp
,
B.
Baird
, and
M.
Mendes
, “
Recent advances in fiber laser welding
,”
Industrial Laser Solutions
33
,
11
16
(
2018
).
49.
Sh.
Guo
,
J.
Zou
,
J.
Xu
,
Q.
Wu
, and
R.
Xiao
, “
Multi-stage keyhole evolution in fiber laser welding: An experimental study and theoretical analysis
,”
Results Phys.
31
,
104943
(
2021
).
50.
J.
Peng
,
H.
Xu
,
X.
Yang
,
X.
Wang
,
S.
Li
,
W.
Long
, and
J.
Zhang
, “
Numerical simulation of molten pool dynamics in laser deep penetration welding of aluminum alloys
,”
Crystals
12
,
873
–891 (
2022
).
You do not currently have access to this content.