In order to obtain the knowledge about the formation of the oriented structure in the additive manufacturing process, it is required to gain an accurate understanding about the formation and growth of grains. Hence, in this paper, the simulation of laser metal deposition was performed by the volume of fluid technique to predict the primary dendritic arm spacing, fluid flows, and geometry of the deposited layer. Moreover, the laser metal deposition of the Inconel 718 superalloy was performed experimentally to verify the results of simulation. From the results of simulation, a maximum error of about 8% was observed in the prediction of the geometry of the deposited layer. In addition, the difference between the value of primary dendritic arm spacing in the experimental and simulation results was about 14%. The results have also shown that a cellular dendritic structure was formed when the ratio of the temperature gradient to the cooling rate was more than 9 × 108, while when this ratio was less than 9 × 108, a columnar dendritic structure was formed. The results of simulations and experiments showed that an increase in the laser power from 350 to 450 W led to an improvement of about 9.5% in the size of primary dendrite arms due to the reduction in the temperature gradient, while the increase in the scanning speed from 3 to 5 mm/s resulted in a reduction of about 21% in the size of primary dendrite arms due to the faster cooling rate.

1.
A. M.
Kamara
,
S.
Marimuthu
, and
L.
Li
, “
Finite element modeling of microstructure in laser-deposited multiple layer Inconel718 parts
,”
Mater. Manuf. Processes
29
,
1245
1252
(
2014
).
2.
I.
John Solomon
,
P.
Sevvel
,
J.
Gunasekaran
, and
P.
Tanushkumaar
, “
A review on additive manufacturing of alloys using laser metal deposition
,”
Mater. Today Proc.
64
,
44
50
(
2022
).
3.
P.
Peyre
,
P.
Aubry
,
R.
Fabbro
,
R.
Neveu
, and
A.
Longuet
, “
Analytical and numerical modelling of the direct metal deposition laser process
,”
J. Phys. D: Appl. Phys.
41
,
025403
(
2008
).
4.
E.
Toyserkani
,
A.
Khajepour
, and
S.
Corbin
, “
3-D finite element modeling of laser cladding by powder injection: Effects of laser pulse shaping on the process
,”
Opt. Lasers Eng.
41
,
849
867
(
2004
).
5.
M.
Alimardani
,
E.
Toyserkani
, and
J. P.
Huissoon
, “
Three-dimensional numerical approach for geometrical prediction of multilayer laser solid freeform fabrication process
,”
J. Laser Appl.
19
,
14
25
(
2007
).
6.
C.
Zhong
,
N.
Pirch
,
A.
Gasser
,
R.
Poprawe
, and
J. H.
Schleifenbaum
, “
The influence of the powder stream on high-deposition-rate laser metal deposition with Inconel 718
,”
Metals
7
,
443
456
(
2017
).
7.
X.
Wu
,
B.
Zhu
,
X.
Zeng
,
X.
Hu
, and
K.
Cui
, “
Critical state of laser cladding with powder auto-feeding
,”
Surf. Coat. Technol.
79
,
200
204
(
1996
).
8.
S.
Jelvani
,
R.
Shoja Razavi
,
M.
Barekat
, and
M.
Dehnavim
, “
Empirical-statistical modeling and prediction of geometric characteristics for laser-aided direct metal deposition of Inconel 718 superalloy
,”
Met. Mater. Int.
26
,
668
681
(
2020
).
9.
M.
Afshari
,
M.
Khandaei
, and
R.
Shoja Razavi
, “
Investigating the laser metal deposition of Inconel 718 superalloy using the numerical and experimental methods
,”
Laser Phys.
32
,
126002
(
2022
).
10.
K.
Yuan
,
W.
Guo
,
P.
Li
,
Y.
Zhang
,
X.
Li
, and
X.
Lin
, “
Thermomechanical behavior of laser metal deposited Inconel 718 superalloy over a wide range of temperature and strain rate: Testing and constitutive modeling
,”
Mech. Mater.
135
,
13
25
(
2019
).
11.
R.
Andreotta
,
L.
Ladani
, and
W.
Brindley
, “
Finite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal properties
,”
Finite Elem. Anal. Des.
135
,
36
43
(
2017
).
12.
Y.
Lee
, “
Simulation of laser additive manufacturing and its applications
,”
Ph.D. dissertation
,
Welding Engineering, The Ohio State University
,
2015
.
13.
S.
Kou
, “
Fluid flow and solidification in welding: Three decades of fundamental research at the University of Wisconsin
,”
Weld. J.
91
,
287
302
(
2012
), see http://s3.amazonaws.com/WJ-www.aws.org/supplement/WJ_2012_11_s287.pdf.
14.
P. D.
Lee
,
P. N.
Quested
, and
M.
McLean
, “
Modelling of Marangoni effects in electron beam melting
,”
Philos. Trans. R. Soc. London Ser. A
356
,
1027
1043
(
1998
).
15.
H.
Gedda
,
J.
Powell
,
G.
Wahlström
,
W. B.
Li
,
H.
Engström
, and
C.
Magnusson
, “
Energy redistribution during CO2 laser cladding
,”
J. Laser Appl.
14
,
549
558
(
2001
).
16.
M.
Picasso
,
C. F.
Marsden
,
J. D.
Wagniere
,
A.
Frenk
, and
M.
Rappaz
, “
A simple but realistic model for laser cladding
,”
Metall. Mater. Trans. B
25
,
281
291
(
1994
).
17.
Y. S.
Lee
,
M.
Nordin
,
S. S.
Babu
, and
D. F.
Farson
, “
Influence of fluid convection on weld pool formation in laser cladding
,”
Weld. J.
93
,
292
300
(
2014
), see http://files.aws.org/wj/supplement/WJ_2014_08_s292.pdf.
18.
R.
Vilar
and
C.
Lino
, “
Laser powder deposition
,”
Rapid Prototyp. J.
15
,
163
216
(
2009
).
19.
S.
Kou
,
Welding Metallurgy
, 2nd ed. (
Wiley
,
New York
,
2002
).
20.
R.
Trivedi
, “
Interdendritic spacing: Part II. A comparison of theory and experiment
,”
Metall. Mater. Trans. A
15
,
977
982
(
1984
).
21.
J. E.
Spinelli
,
O. F. L.
Rocha
, and
A.
Garcia
, “
The influence of melt convection on dendritic spacing of downward unsteady-state directionally solidified Sn-Pb alloys
,”
Mater. Res.
9
,
51
57
(
2006
).
22.
J. D.
Hunt
, “
Steady state columnar and equiaxed growth of dendrites and eutectic
,”
Mater. Sci. Eng.
65
,
75
83
(
1984
).
23.
H.
Yin
and
S. D.
Felicelli
, “
Dendrite growth simulation during solidification in the LENS process
,”
Acta Mater.
58
,
1455
1465
(
2010
).
24.
Y. J.
Tang
,
Y. Z.
Zhang
, and
Y. T.
Liu
, “
Numerical and experimental investigation of laser additive manufactured Ti2AlNb-based alloy
,”
J. Alloys Compd.
727
,
196
204
(
2017
).
25.
X.
Zhao
,
A.
Iyer
,
P.
Promoppatum
, and
S. C.
Yao
, “
Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products
,”
Addit. Manuf.
14
,
126
136
(
2017
).
26.
S.
Zekovic
, “
Numerical simulation and experimental investigation of laser-based direct metal deposition
,”
Ph.D. dissertation
,
Mechanical Engineering, Southern Methodist University
,
2006
.
27.
M.
Megahed
, “
Metal additive-manufacturing process and residual stress modeling
,”
Integr. Mater. Manuf. Innov.
5
,
61
93
(
2016
).
28.
M. H.
Cho
,
Y. C.
Lim
, and
D. F.
Farson
, “
Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape
,”
Weld. J.
85
,
271
283
(
2006
), see http://files.aws.org/wj/supplement/WJ_2006_12_s271.pdf.
29.
S. A.
David
and
J. M.
Vitek
, “
Correlation between solidification parameters and weld microstructures
,”
Int. Mater. Rev.
34
,
213
245
(
1989
).
30.
M.
Rappaz
,
S. A.
David
,
J. M.
Vitek
, and
L. A.
Boatner
, “
Development of microstructures in Fe-15Ni-15Cr single crystal electron beam welds
,”
Metall. Trans. A
20
,
1125
1138
(
1989
).
31.
G.
Sifeng
,
L.
Lin
,
X.
Yiku
,
Y.
Chubin
,
Z.
Jun
, and
F.
Hengzhi
, “
Influences of processing parameters on microstructure during investment casting of nickel-base single crystal superalloy DD3
,”
China Foundry
9
,
159
164
(
2012
), see http://www.foundryworld.com/Public/Uploads/other_img/15540438415fdaca5607264.pdf.
32.
M.
Bellet
and
H.
Makhlouf
, “
Direct modeling of material deposit and identification of energy transfer in gas metal arc welding
,”
Int. J. Numer. Methods Heat Fluid Flow
23
,
1340
1355
(
2013
).
33.
C. G.
da Silva Santim
and
L. F.
Milanez
, “
Numerical study of melting of tin within a rectangular cavity including convective effects
,” in
21st Brazilian Congress of Mechanical Engineering
,
Natal, RN, Brazil,
24–28 October
(ABCM,
2011
).
34.
Z. S.
Saldi
,
A.
Kidess
,
S.
Kenjeres
,
C.
Zhao
,
I. M.
Richardson
, and
C. R.
Kleijn
, “
Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel
,”
Int. J. Heat Mass Transf.
66
,
879
888
(
2013
).
35.
X.
Zhang
,
W.
Ye
,
L.
Mushongera
, and
Y.
Liao
, “
Unravelling heterogeneities in sub-grain cellular structure and micromechanical response of additive manufactured Ti-Nb alloys
,”
Addit. Manuf.
59
,
103146
(
2022
).
36.
T. A.
Vigneshwara Kumaran
,
S. A
Nithin Joseph Reddy
,
S.
Jerome
,
N.
Anbarasan
,
N.
Arivazhagan
,
M.
Manikandan
, and
M.
Sathishkumar
, “
Development of pulsed cold metal transfer and gas metal arc welding techniques on high-strength aerospace-grade AA7475-T761
,”
J. Mater. Eng. Perform.
29
,
7270
7290
(
2020
).
37.
J.
Shao
,
G.
Yu
,
X.
He
,
S.
Li
,
R.
Chen
, and
Y.
Zhao
, “
Grain size evolution under different cooling rate in laser additive manufacturing of superalloy
,”
Opt. Laser Technol.
119
,
105662
(
2019
).
38.
G.
Meng
,
Y.
Gong
,
J.
Zhang
,
L.
Zhu
,
H.
Xie
, and
J.
Zhao
, “
Multi-scale simulation of microstructure evolution during direct laser deposition of Inconel 718
,”
Int. J. Heat Mass Transf.
191
,
122798
(
2022
).
39.
Y. J.
Liang
,
A.
Li
,
X.
Cheng
,
X. T.
Pang
, and
H. M.
Wang
, “
Prediction of primary dendritic arm spacing during laser rapid directional solidification of single-crystal nickel-base superalloys
,”
J. Alloys Compd.
688
,
133
142
(
2016
).
40.
L.
Xu
,
Z.
Chai
,
H.
Chen
,
X.
Zhang
,
J.
Xie
, and
X.
Chen
, “
Tailoring laves phase and mechanical properties of directed energy deposited Inconel 718 thin-wall via a gradient laser power method
,”
Mater. Sci. Eng. A
824
,
141822
(
2021
).
You do not currently have access to this content.