The experimental evaluation of melt surface flow in blown laser cladding and additive manufacturing usually employs tracer particles added to the powder feed. This paper presents details of a high-speed imaging (HSI) and image processing technique, which can directly monitor the flow of standard (nontracer) particles on the surface of the melt. This technique should improve the accuracy of flow observations as no foreign bodies are added to the melt. To verify the technique, 316 Stainless steel powder was laser clad onto a substrate of the same material, and an HSI frame rate of 40 000 frames/s was employed with a specific illumination system. The images were subsequently image processed and the trajectories of the powder feed particles on the melt surface are analyzed and discussed here. As would be expected in this case, the observed melt surface flow was in agreement with what would be expected of a melt with a negative surface tension gradient as a function of temperature.

1.
F.
Wirth
,
S.
Arpagaus
, and
K.
Wegener
, “
Analysis of melt pool dynamics in laser cladding and direct metal deposition by automated high-speed camera image evaluation
,”
Addit. Manuf.
21
,
369
382
(
2018
).
2.
H.
Siva Prasad
,
F.
Brueckner
, and
A. F. H.
Kaplan
, “
Powder catchment in laser metal deposition
,”
J. Laser Appl.
31
,
022308
(
2019
).
3.
A.
Gasser
, “
Oberflächenbehandlung metallischer werkstoffe mit CO2-laserstrahlung in der flüssigen phase
,”
Ph.D. thesis
(
Aachen Technische Hochschule
,
Germany
,
1993
).
4.
J. T.
Hofman
, “
Development of an observation and control system for industrial laser cladding
,”
Ph.D. thesis
(
University of Twente
,
Netherlands
,
2003
).
5.
S. J.
Wolff
,
H.
Wu
,
N.
Parab
,
C.
Zhao
,
K. F.
Ehmann
,
T.
Sun
, and
J.
Cao
, “
In-situ high-speed X-ray imaging of piezo-driven directed energy deposition additive manufacturing
,”
Sci. Rep.
9
,
1
14
(
2019
).
6.
F.
Wirth
, “
Process understanding, modeling and predictive simulation of laser cladding
,”
Ph.D. thesis
(
ETH Zurich.
,
Switzerland
,
2018
).
7.
A.
Ott
, “
Oberflächenmodifikation von aluminiumlegierungen mit laserstrahlung: Prozessverständnis und schichtcharakterisierung
,”
Ph.D. thesis
(
Universität Stuttgart
,
Germany
,
2010
).
8.
J.
Mazumder
, “
Overview of melt dynamics in laser processing
,”
Opt. Eng.
30
,
1208
–1219 (
1991
).
9.
G. K. L.
Ng
,
A. E. W.
Jarfors
,
G.
Bi
, and
H. Y.
Zheng
, “
Porosity formation and gas bubble retention in laser metal deposition
,”
Appl. Phys. A
97
,
641
649
(
2009
).
10.
P. A.
Kobryn
,
E. H.
Moore
, and
S. L.
Semiatin
, “
The effect of laser power and transverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4 V
,”
Scr. Mater.
43
,
299
305
(
2000
).
11.
J.-Y.
Tinevez
, see https://github.com/tinevez/simpletracker for GitHub, simpletracker (2022).
12.
Y.
Cao
, see https://www.mathworks.com/matlabcentral/fileexchange/20328-munkres-assignment-algorithm for Munkres Assignment Algorithm (2022), MATLAB Central File Exchange.
13.
H.
Wang
,
B.
Gould
,
M.
Haddad
,
M.
Moorehead
,
A.
Couet
, and
S. J.
Wolff
, “
In situ high-speed synchrotron X-ray imaging of laser-based directed energy deposition of the alloying process with dissimilar powders
,”
J. Manuf. Process.
75
,
1003
1011
(
2022
).
14.
S.
Kou
,
Welding Metallurgy
(
Wiley-Interscience
,
Hoboken, NJ
,
2002
).
15.
R.
Daub
, “
Erhöhung der nahttiefe beim laserstrahlung wärmeleitungsscheißen von stählen
,”
Ph.D. thesis
(
Technische Universität München
,
Germany
,
2012
).
16.
C.
Zhao
, “
Measurements of fluid flow in weld pools
,”
Ph.D. thesis
(
TUDelft
,
Netherlands
,
2011
).
You do not currently have access to this content.