Coaxial laser wire directed energy deposition promises a direction-independent buildup of near net shape geometries and surface coatings. Simultaneously introducing two different wire materials into the processing zone enables the production of in situ alloyed or even functionally graded structures. Functionally graded materials and in situ alloyed parts aim to extend the range of materials for development purposes. This work covers the intermixing behavior of two wire materials with greatly differing element contents. Therefore, a multiple diode coaxial laser (DiCoLas) processing head is used consisting of three individually controllable fiber coupled laser diodes with a combined maximum output power of 660 W and a wavelength of 970 nm. Two metal wires, 1.4430 and 1.4718, with a diameter of 0.8 mm are provided simultaneously to the processing zone under an incidence angle of 3.5° to the processing head's middle axis. The DiCoLas processing head enables a stable welding process with good dimensional accuracy of the single welding geometries. Single weld seams and multiple-layer structures are investigated to cover the intermixing behavior for different applications of additive manufacturing. Thermal images of the melting process provide an insight into the melting behavior of the two wire materials and the formation of the weld seam. energy-dispersive x-ray-mappings and line scans display the element distribution of the main alloying elements along the seam cross section. Furthermore, hardness measurements examine the hardness progression along the multiple-layer welding structures showing an even progression of the hardness values over the entire cross section.

1.
W. U. H.
Syed
,
A. J.
Pinkerton
, and
L.
Li
, “
A comparative study of wire feeding and powder feeding in direct diode laser deposition for rapid prototyping
,”
Appl. Surf. Sci.
247
,
268
276
(
2005
).
2.
D.
Ding
,
Z.
Pan
,
D.
Cuiuri
, and
H.
Li
, “
Wire-feed additive manufacturing of metal components: Technologies, developments and future interests
,”
Int. J. Adv. Manuf. Technol.
81
,
465
481
(
2015
).
3.
M.
Lammers
,
J.
Hermsdorf
,
S.
Kaierle
, and
H.
Ahlers
, “
Entwicklung von laser-systemkomponenten für das koaxiale laser-draht-auftragschweißen von metall- und glaswerkstoffen
,”
Konstruk. Die Addit. Fertig.
2019
,
245
260
(
2020
).
4.
J.
Kelbassa
,
A.
Gasser
,
J.
Bremer
,
O.
Pütsch
,
R.
Poprawe
, and
J.
Henrich Schleifenbaum
, “
Equipment and process windows for laser metal deposition with coaxial wire feeding
,”
J. Laser Appl.
31
,
022320
(
2019
).
5.
M.
Bambach
,
I.
Sizova
,
F.
Kies
, and
C.
Haase
, “
Directed energy deposition of Inconel 718 powder, cold and hot wire using a six-beam direct diode laser set-up
,”
Addit. Manuf.
47
,
102269
(
2021
).
6.
M.
Ostolaza
,
J. I.
Arrizubieta
,
A.
Lamikiz
, and
M.
Cortina
, “
Functionally graded AISI 316L and AISI H13 manufactured by L-DED for die and mould applications
,”
Appl. Sci.
11
,
1
11
(
2021
).
7.
S.
Ocylok
,
A.
Weisheit
, and
I.
Kelbassa
, “
Functionally graded multi-layers by laser cladding for increased wear and corrosion protection
,”
Phys. Proc.
5
,
359
367
(
2010
).
8.
Y.
Liu
,
C.
Liu
,
W.
Liu
,
Y.
Ma
,
C.
Zhang
,
Q.
Cai
, and
B.
Liu
, “
Microstructure and properties of Ti/Al lightweight graded material by direct laser deposition
,”
Mater. Sci. Technol.
34
,
945
951
(
2018
).
9.
K.
Shah
,
I.
Haq
,
A.
Khan
,
S. A.
Shah
,
M.
Khan
, and
A. J.
Pinkerton
, “
Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition
,”
Mater. Des.
54
,
531
538
(
2014
).
10.
C.
Zhang
,
F.
Chen
,
Z.
Huang
 et al, “
Additive manufacturing of functionally graded materials: A review
,”
Mater. Sci. Eng. A
764
,
138209
(
2019
).
11.
L.
Yan
,
Y.
Chen
, and
F.
Liou
, “
Additive manufacturing of functionally graded metallic materials using laser metal deposition
,”
Addit. Manuf.
31
,
100901
(
2020
).
12.
K. S.
Osipovich
,
E. G.
Astafurova
,
A. V.
Chumaevskii
 et al, “
Gradient transition zone structure in “steel–copper” sample produced by double wire-feed electron beam additive manufacturing
,”
J. Mater. Sci.
55
,
9258
9272
(
2020
).
13.
M.
Teli
,
F.
Klocke
,
K.
Arntz
,
K.
Winands
,
M.
Schulz
, and
S.
Oliari
, “
Study for combined wire + powder laser metal deposition of H11 and niobium
,”
Proc. Manuf.
25
,
426
434
(
2018
).
14.
T. A.
Rodrigues
,
N.
Bairrão
,
F. W. C.
Farias
 et al, “
Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM)
,”
Mater. Des.
213
,
110270
(
2022
).
15.
A.
Weisheit
,
E.
Fuchs
,
M.
Bankowski
, and
C.
Freyer
, Abschlussbericht Multifunktionale Gradientenwerkstoffe für den Werkzeugbau [Internet]. Aachen (2006).
16.
R.
Poprawe
, “
AD
,” in
Tailored Light 2 [Internet]
, edited by
R.
Poprawe
(
Springer
,
Berlin
,
2011
).
17.
S.
Wei
,
G.
Wang
,
Y. C.
Shin
, and
Y.
Rong
, “
Comprehensive modeling of transport phenomena in laser hot-wire deposition process
,”
Int. J. Heat Mass Transfer
125
,
1356
1368
(
2018
).
18.
N.
Schwarz
,
M.
Lammers
,
J.
Hermsdorf
,
S.
Kaierle
,
H.
Ahlers
, and
R.
Lachmayer
, “
Direction dependency in coaxial laser double wire direct energy deposition
,”
Proc. CIRP
111
,
196
200
(
2022
).
You do not currently have access to this content.