Recent advances in additive manufacturing technologies have already led to the wide-scale adoption of 3D-printed parts in the aerospace, medical, automotive, tooling, and electronics industries. The expansion in choice of materials that can be processed, in particular, using fused deposition modeling (FDM), selective laser sintering/melting, and stereolithography, and the steady advancements in dimensional accuracy control, have extended the range of applications beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations on the mechanical strength were studied, and ultrafast laser postprocessing was utilized to reduce the surface roughness of 3D-printed parts. The samples were manufactured using a commercial desktop FDM system and standard ASTM flat dogbone geometries. The samples were then postprocessed with a high-repetition-rate ultrafast Yb-fiber laser using a multi-layer scan approach. This novel postprocessing method enables high-efficiency material removal without inducing excessive thermal residual stresses into the material and, therefore, is suitable for postprocessing thermally sensitive materials, such as PLA and other polymers as well as parts with engineered porosity. In this work, we vary laser process parameters, such as average power and number of laser-processed layers, to achieve various levels of surface roughness. Values of tensile strength of the specimens were compared between 3D-printed samples featuring initial roughness and laser postprocessed samples with different values of surface roughness. The results indicate that the laser-processed samples exhibit an almost 10% increase in tensile strength depending on specific laser processing parameters.

1.
B.
Blakey-Milner
,
P.
Gradl
,
G.
Snedden
,
M.
Brooks
,
J.
Pitot
,
E.
Lopez
,
M.
Leary
,
F.
Berto
, and
A.
du Plessis
, “
Metal additive manufacturing in aerospace: A review
,”
Mater. Des.
209
,
110008
(
2021
).
2.
T. D.
Ngo
,
A.
Kashani
,
G.
Imbalzano
,
K. T. Q.
Nguyen
, and
D.
Hui
, “
Additive manufacturing (3D printing): A review of materials, methods, applications and challenges
,”
Compos. Part B: Eng.
143
,
172
196
(
2018
).
3.
L.
Yin
,
J.
Doyhamboure-Fouquet
,
X.
Tian
, and
D.
Li
, “
Design and characterization of radar absorbing structure based on gradient-refractive-index metamaterials
,”
Compos. Part B: Eng.
132
,
178
187
(
2018
).
4.
J. C.
Najmon
,
S.
Raeisi
, and
A.
Tovar
, “
Review of additive manufacturing technologies and applications in the aerospace industry
,”
Addit. Manuf. Aerosp. Ind.
1,
7
31
(
2019
).
5.
A.
Liu
,
G.
Xue
,
M.
Sun
,
H.
Shao
,
C.
Ma
,
Q.
Gao
,
Z.
Gou
,
S.
Yan
,
Y.
Liu
, and
Y.
He
, “
3D printing surgical implants at the clinic: A experimental study on anterior cruciate ligament reconstruction
,”
Sci. Rep.
6
,
1
13
(
2016
).
6.
V. V.
Popov
,
G.
Muller-Kamskii
,
A.
Kovalevsky
,
G.
Dzhenzhera
,
E.
Strokin
,
A.
Kolomiets
, and
J.
Ramon
, “
Design and 3D-printing of titanium bone implants: Brief review of approach and clinical cases
,”
Biomed. Eng. Lett.
8
,
337
344
(
2018
).
7.
Dalgarno
,
K. W.
, “
Materials research to support high performance RM parts
,” in
2nd International Conference on Rapid Manufacturing
(
Newcastle University
, United Kingdom,
2007
).
8.
Kruth
,
J.-P.
,
Deckers
,
J.
, and
Yasa
,
E
., “
Experimental investigation of laser surface remelting for the improvement of selective laser melting process
,” in
Proceedings of the 19th Solid Freeform Fabrication Symposium
(University of Texas, Austin, Texas,
2008
), pp.
321
332
.
9.
F.
Lavecchia
,
M. G.
Guerra
, and
L. M.
Galantucci
, “
Chemical vapor treatment to improve surface finish of 3D printed polylactic acid (PLA) parts realized by fused filament fabrication
,”
Prog. Addit. Manuf.
7
,
65
75
(
2022
).
10.
W.
Zhang
,
K.
Wong
,
M.
Morales
,
C.
Molpeceres
, and
C. B.
Arnold
, “
Implications of using two low-power continuous-wave lasers for polishing
,”
Int. J. Extreme Manuf.
2
,
35101
(
2020
).
11.
A.
Temmler
,
D.
Liu
,
J.
Luo
, and
R.
Poprawe
, “
Influence of pulse duration and pulse frequency on micro-roughness for laser micro polishing (LμP) of stainless steel AISI 410
,”
Appl. Surf. Sci.
510
,
145272
(
2020
).
12.
S.
Marimuthu
,
A.
Triantaphyllou
,
M.
Antar
,
D.
Wimpenny
,
H.
Morton
, and
M.
Beard
, “
Laser polishing of selective laser melted components
,”
Int. J. Mach. Tools Manuf.
95
,
97
104
(
2015
).
13.
Y.
Tian
,
W. S.
Gora
,
A. P.
Cabo
,
L. L.
Parimi
,
D. P.
Hand
,
S.
Tammas-Williams
, and
P. B.
Prangnell
, “
Material interactions in laser polishing powder bed additive manufactured Ti6Al4V components
,”
Addit. Manuf.
20
,
11
22
(
2018
).
14.
C. P.
Ma
,
Y. C.
Guan
, and
W.
Zhou
, “
Laser polishing of additive manufactured Ti alloys
,”
Opt. Lasers Eng.
93
,
171
177
(
2017
).
15.
Y.
Guan
,
Y.
Li
, and
H.
Wang
, “
Laser polishing of additive-manufactured Ti alloys and Ni alloys
,” in
Handbooks in Advanced Manufacturing, Additive Manufacturing
(
Elsevier
,
2021
) Chap. 10, pp.
343
368
.
16.
A.
Lamikiz
,
J. A.
Sánchez
,
L. N.
López de Lacalle
, and
J. L.
Arana
, “
Laser polishing of parts built up by selective laser sintering
,”
Int. J. Mach. Tools Manuf.
47
,
2040
2050
(
2007
).
17.
D.
Bhaduri
,
P.
Penchev
,
A.
Batal
,
S.
Dimov
,
S. L.
Soo
,
S.
Sten
,
U.
Harrysson
,
Z.
Zhang
, and
H.
Dong
, “
Laser polishing of 3D printed mesoscale components
,”
Appl. Surf. Sci.
405
,
29
46
(
2017
).
18.
L.
Chen
,
B.
Richter
,
X.
Zhang
,
X.
Ren
, and
F. E.
Pfefferkorn
, “
Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing
,”
Addit. Manuf.
32
,
101013
(
2020
).
19.
F.
Zhihao
,
L.
Libin
,
C.
Longfei
, and
G.
Yingchun
, “
Laser polishing of additive manufactured superalloy
,”
Proc. CIRP
71
,
150
154
(
2018
).
20.
J.
dos Santos Solheid
,
H.
Jürgen Seifert
, and
W.
Pfleging
, “
Laser surface modification and polishing of additive manufactured metallic parts
,”
Proc. CIRP
74
,
280
284
(
2018
).
21.
K. B.
Bonsa
,
W. G.
Jiru
,
M. R.
Sankar
, and
U. S.
Dixit
, “
Experimental study and empirical modelling of laser surface finishing of silicon carbide
,”
Int. J. Addit. Subtractive Mater. Manuf.
1
,
290
309
(
2017
).
22.
C.
Liang
,
Y.
Hu
,
N.
Liu
,
X.
Zou
,
H.
Wang
,
X.
Zhang
,
Y.
Fu
, and
J.
Hu
, “
Laser polishing of Ti6Al4V fabricated by selective laser melting
,”
Metals (Basel)
10
,
191
–203 (
2020
).
23.
D.
Zhang
,
J.
Yu
,
H.
Li
,
X.
Zhou
,
C.
Song
,
C.
Zhang
,
S.
Shen
,
L.
Liu
, and
C.
Dai
, “
Investigation of laser polishing of four selective laser melting alloy samples
,”
Appl. Sci.
10
,
760
–772 (
2020
).
24.
S.
Genna
and
G.
Rubino
, “
Laser finishing of Ti6Al4V additive manufactured parts by electron beam melting
,”
Appl. Sci.
10
,
183
–195 (
2019
).
25.
L.
Zhao
,
J.
Cheng
,
M.
Chen
,
X.
Yuan
,
W.
Liao
,
Q.
Liu
,
H.
Yang
, and
H.
Wang
, “
Formation mechanism of a smooth, defect-free surface of fused silica optics using rapid CO2 laser polishing
,”
Int. J. Extreme Manuf.
1
,
035001
(
2019
).
26.
N.
Li
,
D.
Qiao
,
S.
Zhao
,
Q.
Lin
,
B.
Zhang
, and
F.
Xie
, “
3D printing to innovate biopolymer materials for demanding applications: A review
,”
Mater. Today Chem.
20
,
100459
(
2021
).
27.
J. R. C.
Dizon
,
A. H.
Espera Jr
,
Q.
Chen
, and
R. C.
Advincula
, “
Mechanical characterization of 3D-printed polymers
,”
Addit. Manuf.
20
,
44
67
(
2018
).
28.
Z. C.
Eckel
,
C.
Zhou
,
J. H.
Martin
,
A. J.
Jacobsen
,
W. B.
Carter
, and
T. A.
Schaedler
, “
Additive manufacturing of polymer-derived ceramics
,”
Science (80-.)
351
,
58
62
(
2016
).
29.
G.
Zhang
,
D.
Carloni
, and
Y.
Wu
, “
3D printing of transparent YAG ceramics using copolymer-assisted slurry
,”
Ceram. Int.
46
,
17130
17134
(
2020
).
30.
D.
Carloni
,
G.
Zhang
, and
Y.
Wu
, “
Transparent alumina ceramics fabricated by 3D printing and vacuum sintering
,”
J. Eur. Ceram. Soc.
41
,
781
791
(
2021
).
31.
D.
Zhang
,
B.
Ranjan
,
T.
Tanaka
, and
K.
Sugioka
, “
Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring
,”
Int. J. Extrem. Manuf.
2
,
015001
(
2020
).
32.
P.
Fan
,
B.
Bai
,
M.
Zhong
,
H.
Zhang
,
J.
Long
,
J.
Han
,
W.
Wang
, and
G.
Jin
, “
General strategy toward dual-scale-controlled metallic micro–nano hybrid structures with ultralow reflectance
,”
ACS Nano
11
,
7401
7408
(
2017
).
33.
Y.
Zhang
,
Y.
Jiao
,
C.
Li
,
C.
Chen
,
J.
Li
,
Y.
Hu
,
D.
Wu
, and
J.
Chu
, “
Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications
,”
Int. J. Extrem. Manuf.
2
,
032002
(
2020
).
34.
Y.
Liu
,
W.
Xiong
,
Y.
Lu
,
X.
Huang
,
H.
Liu
,
L. S.
Fan
,
L.
Jiang
,
J.-F.
Silvain
, and
Y. F.
Lu
, “
Precise assembly and joining of silver nanowires in three dimensions for highly conductive composite structures
,”
Int. J. Extrem. Manuf.
1
,
025001
(
2019
).
35.
N.
Li
,
P.
Fan
,
Q.
Zhu
,
B.
Cui
,
J.-F.
Silvain
, and
Y.
Lu
, “
Femtosecond laser polishing of additively manufactured parts at grazing incidence
,”
Appl. Surf. Sci.
612
,
155833
(
2022
).
36.
M.
Kılıç
,
E.
Burdurlu
,
S.
Aslan
,
S.
Altun
, and
Ö
Tümerdem
, “
The effect of surface roughness on tensile strength of the medium density fiberboard (MDF) overlaid with polyvinyl chloride (PVC)
,”
Mater. Des.
30
,
4580
4583
(
2009
).
37.
J.
Dang
,
Q.
An
,
G.
Lian
,
Z.
Zuo
,
Y.
Li
,
H.
Wang
, and
M.
Chen
, “
Surface modification and its effect on the tensile and fatigue properties of 300 M steel subjected to ultrasonic surface rolling process
,”
Surf. Coat. Technol.
422
,
127566
(
2021
).
38.
M.
Altan
,
M.
Eryildiz
,
B.
Gumus
, and
Y.
Kahraman
, “
Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): surface roughness and tensile strength
,”
Mater. Test.
60
,
471
477
(
2018
).
39.
W.
Everhart
,
E.
Sawyer
,
T.
Neidt
,
J.
Dinardo
, and
B.
Brown
, “
The effect of surface finish on tensile behavior of additively manufactured tensile bars
,”
J. Mater. Sci.
51
,
3836
3845
(
2016
).
40.
Y.
Ba
,
Y.
Wen
, and
S.
Wu
, “
Mechanical characterization and thermodynamic analysis of laser-polished landscape design products using 3D printing
,”
Materials (Basel)
14
,
2601
–2614 (
2021
).
41.
D. M.
Patel
, “
Effects of infill patterns on time, surface roughness and tensile strength in 3D printing
,”
Int. J. Eng. Dev. Res
5
,
566
569
(
2017
).
42.
G.
Morettini
,
M.
Palmieri
,
L.
Capponi
, and
L.
Landi
, “
Comprehensive characterization of mechanical and physical properties of PLA structures printed by FFF-3D-printing process in different directions
,”
Prog. Addit. Manuf.
1
12
(
2022
).
43.
Standard Test Method for Tensile Properties of Plastics 1
(
ASTM International
,
West Conshohocken, PA
,
2006
).
44.
T.
Letcher
and
M.
Waytashek
, “
Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer,” ASME international mechanical engineering congress and exposition
,”
Am. Soc. Mech. Eng.
2A,
V02AT02A014
(
2014
).
You do not currently have access to this content.