Laser peening is a promising surface treatment technique for enhancing the mechanical performance of metals. In laser peening, the plasma confinement layer contributes to the generation of high-pressure shockwaves by suppressing the expansion of laser-induced plasma. Therefore, the choice of a plasma confinement layer is important for improving laser peening effectiveness. For laser peening in environments where liquid materials cannot be used as a plasma confinement layer, alginate gel, which is a pliable material with shape-following capabilities, has been proposed to reduce the acoustic impedance mismatch caused by surface roughness when using solid materials. In this study, the feasibility of alginate gel as a plasma confinement layer and an appropriate process window for laser irradiation were investigated. The results of this study are then presented.

1.
K.
Ding
and
L.
Ye.
,
Laser Shock Peening: Performance and Process Simulation
(
Woodhead
, Boca Raton, FL,
2006
).
2.
A. H.
Clauer
, “
Laser shock peening for fatigue resistance
,” in
Proceedings of Surface Performance of Titanium
, edited by
J. K.
Gregory
,
H. J.
Rack
and
D.
Eylon
(
TMS
, Warrendale, PA
,
1996
), pp.
217
230
.
3.
R.
Fabbro
,
P.
Peyre
,
L.
Berthe
, and
X.
Scherpereel
, “
Physics and applications of laser-shock processing
,”
J. Laser Appl.
10
,
265
279
(
1998
).
4.
X.
Hong
,
S. B.
Wang
,
D. H.
Guo
,
H. X.
Wu
,
J.
Wang
,
Y. S.
Dai
,
X. P.
Xia
, and
Y. N.
Xie
, “
Confining medium and absorptive overlay: Their effects on a laser-induced shock wave
,”
Opt. Lasers Eng.
29
,
447
455
(
1998
).
5.
R.
Fabbro
,
J.
Fournier
,
P.
Ballard
,
D.
Devaux
, and
J.
Virmont
, “
Physical study of laser-produced plasma in confined geometry
,”
J. Appl. Phys.
68
,
775
784
(
1990
).
6.
C. L.
Bras
,
A.
Rondepierre
,
R.
Seddik
,
M.
Scius-Bertrand
,
Y.
Rouchausse
,
L.
Videau
,
B.
Fayolle
,
M.
Gervais
,
L.
Morin
,
S.
Valadon
,
R.
Ecault
,
D.
Furfari
, and
L.
Berthe
, “
Laser shock peening: Toward the use of pliable solid polymers for confinement
,”
Metals
9
,
793
(
2019
).
7.
N. C.
Anderholm
, “
Laser-generated stress waves
,”
Appl. Phys. Lett.
16
,
113
115
(
1970
).
8.
M.
Tsuyama
,
N.
Ehara
,
K.
Yamashita
,
M.
Heya
, and
H.
Nakano
, “
Effects of controlling the plasma confinement layer on laser peening
,”
Rev. Laser Eng.
45
,
658
661
(
2017
) (in Japanese).
9.
M.
Tsuyama
,
N.
Ehara
,
K.
Yamashita
,
M.
Heya
, and
H.
Nakano
, “
Effect of laser peening with glycerol as plasma confinement layer
,”
Appl. Phys. A
124
,
250
(
2018
).
10.
N. S.
Masroon
,
A.
Hata
,
M.
Tsuyama
,
M.
Heya
, and
H.
Nakano
, “
Water temperature as acoustic impedance control for efficient laser peening
,”
Optik
242
,
167097
(
2021
).
11.
M.
Tsuyama
,
Y.
Sugimoto
,
M.
Heya
, and
H.
Nakano
, “
Laser peening with solid-state medium having high acoustic impedance as plasma confinement layer
,”
J. Laser Micro Nanoeng.
16
,
173
177
(
2021
).
12.
KIMICA
. “Example of gel formulation using alginic acid,” (2017). See https://www.kimica.jp/upload/2021/01/block-jelly.pdf (in Japanese).
13.
H.
Soyama
, “
Laser cavitation peening and its application for improving the fatigue strength of welded parts
,”
Metals
11
,
531
(
2021
).
14.
E.-A.
Brujan
and
A.
Vogel
, “
Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom
,”
J. Fluid Mech.
558
,
281
308
(
2006
).
15.
N. S.
Masroon
,
H.
Hirata
,
M.
Tsuyama
,
M.
Heya
, and
H.
Nakano
, “
Effects of laser peening parameters on plastic deformation in aqueous glycerol solution as plasma confinement layer
,”
J. Laser Micro Nanoeng.
16
,
160
165
(
2021
).
You do not currently have access to this content.