Glass cleaving by Bessel-like beams is one of the leading techniques providing high processing throughput and high edge quality. With the possibility to apply it to different transparent materials, this method has great potential in the high-volume production of flat panel displays, camera windows, medical devices, and others. The principle of glass cleaving is the controlled weakening of a hard transparent material by the induction of microcracks along a tight, elongated focus. These microcracks are oriented in a predefined, constant direction, limiting the flexibility of round shape fabrication. In contrast to dynamic beam manipulation techniques, the regime of direction-independent cutting was achieved through proper temporal pulse shaping. The setup does not consist of any active components in the beam path. The obtained quality and process speed are comparable with other, more complex laser cleaving techniques. Additionally, the successful cutting of polymers is presented, which are difficult to separate by the Bessel beam due to the limited possibility of microcrack generation.

1.
R.
Meyer
,
M.
Jacquot
,
R.
Giust
,
J.
Safioui
,
L.
Rapp
,
L.
Furfaro
,
P.-A.
Lacourt
,
J. M.
Dudley
, and
F.
Courvoisier
, “
Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams
,”
Opt. Lett.
42
,
4307
4310
(
2017
).
2.
J.
Dudutis
,
R.
Stonys
,
G.
Račiukaitis
, and
P.
Gečys
, “
Aberration-controlled Bessel beam processing of glass
,”
Opt. Express
26
,
3627
3637
(
2018
).
3.
J.
Dudutis
,
M.
Mackevičiūtė
,
J.
Pipiras
,
R.
Stonys
,
V.
Stankevič
,
G.
Račiukaitis
, and
P.
Gečys
, “
Transversal and axial modulation of axicon-generated Bessel beams using amplitude and phase masks for glass processing applications
,”
Opt. Express
30
,
1860
1874
(
2022
).
4.
J.
Baltrukonis
,
O.
Ulčinas
,
S.
Orlov
, and
V.
Jukna
, “
Void and micro-crack generation in transparent materials with high-energy first-order vector Bessel beam
,”
J. Opt. Soc. Am. B
37
,
2121
2127
(
2020
).
5.
M.
Jenne
,
D.
Flamm
,
K.
Chen
,
M.
Schäfer
,
M.
Kumkar
, and
S.
Nolte
, “
Facilitated glass separation by asymmetric Bessel-like beams
,”
Opt. Express
28
,
6552
6564
(
2020
).
6.
K.
Mishchik
,
M.
Delaiguea
,
C.
Hönningera
, and
E.
Mottaya
,
Advanced Spatial and Temporal Shaping for Glass Cutting Application. Proceedings of Laser in Manufacturing, LiM 2019
, Munich (2019); available at https://wlt.de/lim/Proceedings2019/data/PDF/Contribution_304_final.pdf.
7.
K.
Mishchik
,
R.
Beuton
,
O.
Dematteo Caulier
,
S.
Skupin
,
B.
Chimier
,
G.
Duchateau
,
B.
Chassagne
,
R.
Kling
,
C.
Hönninger
,
E.
Mottay
, and
J.
Lopez
, “
Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses
,”
Opt. Express
25
,
33271
33282
(
2017
).
8.
D.
Flamm
,
M.
Kaiser
,
M.
Feil
,
M.
Kahmann
,
M.
Lang
,
J.
Kleiner
, and
T.
Hesse
, “
Protecting the edge: Ultrafast laser modified C-shaped glass edges
,”
J. Laser Appl.
34
,
012014
(
2022
).
9.
F.
Ahmed
,
M. S.
Lee
,
H.
Sekita
,
T.
Sumiyoshi
, and
M.
Kamata
, “
Display glass cutting by femtosecond laser induced single shot periodic void array
,”
Appl. Phys. A
93
,
189
192
(
2008
).
10.
F.
Hendricks
,
V. V.
Matylitsky
,
M.
Domke
, and
H. P.
Huber
, “
Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials
,” in
Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XVI
(
International Society for Optics and Photonics
,
2016
), Vol.
9740
.
11.
R.
Meyer
,
L.
Froehly
,
R.
Giust
,
J.
Del Hoyo
,
L.
Furfaro
,
C.
Billet
, and
F.
Courvoisier
, “
Extremely high-aspect-ratio ultrafast Bessel beam generation and stealth dicing of multi-millimeter thick glass
,”
Appl. Phys. Lett.
114
,
201105
(
2019
).
You do not currently have access to this content.