This paper presents a detailed study on the dimensional accuracy of Ti6Al4V parts manufactured by the wire feed laser directed energy deposition process as compared to the design data before any postprocessing, as the majority of the reported research is focused on the mechanical and microstructural properties of the manufactured parts. Due to the large layer thickness (1.2 mm) and high material deposition rate (15 mm/s), smaller rectangular samples were susceptible to more dimensional inaccuracies. Most of the samples have larger dimensions than the design data, which is favorable for postprocessing. Special consideration should be given to the Z axis as the top layer has the most curves on the periphery of the samples due to shrinkage upon cooling. Depositing the material along the periphery of the present layer at the start of each layer minimized the overflow of the molten alloy when the laser is near the edges of the model in each layer. Upon further inspection using an optical microscope and scanning electron microscope analysis, surfaces voids were observed. Only ∼0.5 mm was required to remove from each side to obtain a minimal crack-free flat surface. The microhardness of the samples ranged from 313.64 to 346.17 HV.

1.
Z.
Li
,
S.
Sui
,
X.
Ma
,
H.
Tan
,
C.
Zhong
,
G.
Bi
,
A. T.
Clare
,
A.
Gasser
, and
J.
Chen
, “
High deposition rate powder- and wire-based laser directed energy deposition of metallic materials: A review
,”
Int. J. Mach. Tools Manuf.
181
,
103942
(
2022
).
2.
G.
Ma
,
X.
Liu
,
C.
Song
,
F.
Niu
, and
D.
Wu
, “
TiCp reinforced Ti6Al4V of follow-up synchronous electromagnetic induction-laser hybrid directed energy deposition: Microstructure evolution and mechanical properties
,”
Addit. Manuf.
59
,
103087
(
2022
).
3.
H.
Lu
,
L.
Wu
,
H.
Wei
,
J.
Cai
,
K.
Luo
,
X.
Xu
, and
J.
Lu
, “
Microstructural evolution and tensile property enhancement of remanufactured Ti6Al4V using hybrid manufacturing of laser directed energy deposition with laser shock peening
,”
Addit. Manuf.
55
,
102877
(
2022
).
4.
T. M.
Butler
,
C. A.
Brice
,
W. A.
Tayon
,
S. L.
Semiatin
, and
A. L.
Pilchak
, “
Evolution of texture from a single crystal Ti-6Al-4V substrate during electron beam directed energy deposition
,”
Metall. Mater. Trans. A
48
,
4441
4446
(
2017
).
5.
P. C.
Collins
and
D. G.
Harlow
, “
Probability and statistical modeling: Ti-6Al-4V produced via directed energy deposition
,”
J. Mater. Eng. Perform.
30
,
6905
6912
(
2021
).
6.
B. J.
Hayes
,
B. W.
Martin
,
B.
Welk
,
S. J.
Kuhr
,
T. K.
Ales
,
D. A.
Brice
,
I.
Ghamarian
,
A. H.
Baker
,
C. V.
Haden
,
D. G.
Harlow
,
H. L.
Fraser
, and
P. C.
Collins
, “
Predicting tensile properties of Ti-6Al-4V produced via directed energy deposition
,”
Acta Mater.
133
,
120
133
(
2017
).
7.
D. R.
Waryoba
,
J. S.
Keist
,
C.
Ranger
, and
T. A.
Palmer
, “
Microtexture in additively manufactured Ti-6Al-4V fabricated using directed energy deposition
,”
Mater. Sci. Eng. A
734
,
149
163
(
2018
).
8.
A.
Ramalho
,
T. G.
Santos
,
B.
Bevans
,
Z.
Smoqi
,
P.
Rao
, and
J. P.
Oliveira
, “
Effect of contaminations on the acoustic emissions during wire and arc additive manufacturing of 316L stainless steel
,”
Addit. Manuf.
51
,
102585
(
2022
).
9.
T. A.
Rodrigues
,
J. D.
Escobar
,
J.
Shen
,
V. R.
Duarte
,
G. G.
Ribamar
,
J. A.
Avila
,
E.
Maawad
,
N.
Schell
,
T. G.
Santos
, and
J. P.
Oliveira
, “
Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron X-ray diffraction analysis
,”
Addit. Manuf.
48
,
102428
(
2021
).
10.
X.
Zuo
,
W.
Zhang
,
Y.
Chen
,
J.
Oliveira
,
Z.
Zeng
,
Y.
Li
,
Z.
Luo
, and
S.
Ao
, “
Wire-based directed energy deposition of NiTiTa shape memory alloys: Microstructure, phase transformation, electrochemistry, X-ray visibility and mechanical properties
,”
Addit. Manuf.
59
,
103115
(
2022
).
11.
See https://www.astm.org/f3177-21.html for ISO/ASTM 52900:2021(en), Additive manufacturing—General principles—Fundamentals and vocabulary, 2021.
12.
C. A. F.
Salvador
,
E. L.
Maia
,
F. H.
Costa
,
J. D.
Escobar
, and
J. P.
Oliveira
, “
A compilation of experimental data on the mechanical properties and microstructural features of Ti-alloys
,”
Sci. Data.
9
,
1
6
(
2022
).
13.
Z.
Huda
and
P.
Edi
, “
Materials selection in design of structures and engines of supersonic aircrafts: A review
,”
Mater. Des.
46
,
552
560
(
2013
).
14.
B.
Callegari
,
J. P.
Oliveira
,
K.
Aristizabal
,
R. S.
Coelho
,
P. P.
Brito
,
L.
Wu
,
N.
Schell
,
F. A.
Soldera
,
F.
Mücklich
, and
H. C.
Pinto
, “
In-situ synchrotron radiation study of the aging response of Ti-6Al-4V alloy with different starting microstructures
,”
Mater. Charact.
165
,
110400
(
2020
).
15.
L. C.
Zhang
and
L. Y.
Chen
, “
A review on biomedical titanium alloys: Recent progress and prospect
,”
Adv. Eng. Mater.
21
,
1801215
(
2019
).
16.
T.
Lieneke
,
V.
Denzer
,
G. A. O.
Adam
, and
D.
Zimmer
, “
Dimensional tolerances for additive manufacturing experimental investigation for fused deposition modeling
,” in
Procedia CIRP
, 8–20 May 2016 (
Elsevier
, Gothenburg, Sweden,
2016
), pp.
286
291
.
17.
E.
Cuesta
,
A.
Gesto
,
B. J.
Alvarez
,
S.
Martínez-Pellitero
,
P.
Zapico
, and
S.
Giganto
, “
Dimensional accuracy analysis of direct metal printing machine focusing on roller positioning errors
,” in
Procedia Manufacturing
, June 19–21, 2019 (
Elsevier
, Madrid, Spain,
2019
), pp.
2
9
.
18.
S.
Gruber
,
C.
Grunert
,
M.
Riede
,
E.
López
,
A.
Marquardt
,
F.
Brueckner
, and
C.
Leyens
, “
Comparison of dimensional accuracy and tolerances of powder bed based and nozzle based additive manufacturing processes
,”
J. Laser Appl.
32
,
032016
(
2020
).
19.
J.
Tomas
,
L.
Hitzler
,
M.
Köller
,
J.
von Kobylinski
,
M.
Sedlmajer
,
E.
Werner
, and
M.
Merkel
, “
The dimensional accuracy of thin-walled parts manufactured by laser-powder bed fusion process
,”
J. Manuf. Mater. Process.
4
,
91
(
2020
).
20.
M.
Adach
,
P.
Sokołowski
,
T.
Piwowarczyk
, and
K.
Nowak
, “
Study on geometry, dimensional accuracy and structure of parts produced by multi jet fusion
,”
Materials (Basel)
14
,
4510
(
2021
).
21.
P. H.
Lee
,
H.
Chung
,
S. W.
Lee
,
J.
Yoo
, and
J.
Ko
, “
Review dimensional accuracy in additive manufacturing processes
,” in
ASME 2014 International Manufacturing Science and Engineering Conference MSEC 2014 Collocated with JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference
, June 9–13, 2014 (
American Society of Mechanical Engineers Digital Collection
, Detroit, MI,
2014
).
22.
D.
Jafari
,
T. H. J.
Vaneker
, and
I.
Gibson
, “
Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts
,”
Mater. Des.
202
,
109471
(
2021
).
23.
S.
Murchio
,
M.
Dallago
,
F.
Zanini
,
S.
Carmignato
,
G.
Zappini
,
F.
Berto
,
D.
Maniglio
, and
M.
Benedetti
, “
Additively manufactured Ti-6Al-4V thin struts via laser powder bed fusion: Effect of building orientation on geometrical accuracy and mechanical properties
,”
J. Mech. Behav. Biomed. Mater.
119
,
104495
(
2021
).
24.
X.
Wang
,
A.
Wang
, and
Y.
Li
, “
Study on the deposition accuracy of omni-directional GTAW-based additive manufacturing
,”
J. Mater. Process. Technol.
282
,
116649
(
2020
).
25.
J.
Xu
,
X.
Gu
,
D.
Ding
,
Z.
Pan
, and
K.
Chen
, “
A review of slicing methods for directed energy deposition based additive manufacturing
,”
Rapid Prototyp. J.
24
,
1012
1025
(
2018
).
26.
Y.
Wang
and
Y. F.
Zhao
, “
Investigation of sintering shrinkage in binder jetting additive manufacturing process
,” in
Procedia Manufacturing
, June 4–8, 2017 (
Elsevier
, Angeles, CA,
2017
), pp.
779
790
.
27.
I.
Ait-Mansour
,
N.
Kretzschmar
,
S.
Chekurov
,
M.
Salmi
, and
J.
Rech
, “
Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFF
,”
Prog. Addit.: Manuf.
5
,
51
57
(
2020
).
28.
T. A.
Rodrigues
,
N.
Bairrão
,
F. W. C.
Farias
,
A.
Shamsolhodaei
,
J.
Shen
,
N.
Zhou
,
E.
Maawad
,
N.
Schell
,
T. G.
Santos
, and
J. P.
Oliveira
, “
Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM)
,”
Mater. Des.
213
,
110270
(
2022
).
29.
T. A.
Rodrigues
et al., “
Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material: Development and characterization
,”
J. Mater. Res. Technol.
21
,
237
251
(
2022
).
30.
S. A. R.
Shamsdini
,
S.
Shakerin
,
A.
Hadadzadeh
,
B. S.
Amirkhiz
, and
M.
Mohammadi
, “
A trade-off between powder layer thickness and mechanical properties in additively manufactured maraging steels
,”
Mater. Sci. Eng. A
776
,
139041
(
2020
).
31.
J.
Li
,
X.
Cheng
,
Z.
Li
,
X.
Zong
,
X. H.
Chen
,
S. Q.
Zhang
, and
H. M.
Wang
, “
Microstructures and mechanical properties of laser additive manufactured Al-5Si-1Cu-Mg alloy with different layer thicknesses
,”
J. Alloys Compd.
789
,
15
24
(
2019
).
32.
E.
Sheydaeian
,
Z.
Fishman
,
M.
Vlasea
, and
E.
Toyserkani
, “
On the effect of throughout layer thickness variation on properties of additively manufactured cellular titanium structures
,”
Addit. Manuf.
18
,
40
47
(
2017
).
33.
D. S.
Shim
,
G. Y.
Baek
,
J. S.
Seo
,
G. Y.
Shin
,
K. P.
Kim
, and
K. Y.
Lee
, “
Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process
,”
Opt. Laser Technol.
86
,
69
78
(
2016
).
34.
Y.
Jeong
,
G. Y.
Shin
, and
D. S.
Shim
, “
Effect of P21 buffer layer on interfacial bonding characteristics of high-carbon tool steel hard-faced through directed energy deposition
,”
J. Manuf. Process.
68
,
1596
1614
(
2021
).
35.
P.
Kumar
,
N. K.
Jain
, and
M. S.
Sawant
, “
Development of theoretical models for dimensions of single-layer multi-track and multi-layer multi-track depositions by μ-PTA additive manufacturing process
,”
J. Mater. Res. Technol.
17
,
95
110
(
2022
).
36.
D.
Ding
,
Z.
Pan
,
D.
Cuiuri
, and
H.
Li
, “
Wire-feed additive manufacturing of metal components: Technologies, developments and future interests
,”
Int. J. Adv. Manuf. Technol.
81
,
465
481
(
2015
).
37.
See https://www.astm.org/e0466-21.html for ASTM, standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials, ASTM Publ. 03 (2002), pp. 4–8.
38.
B. N.
Turner
and
S. A.
Gold
, “
A review of melt extrusion additive manufacturing processes: II: Materials, dimensional accuracy, and surface roughness
,”
Rapid Prototyp. J.
21
,
250
261
(
2015
).
39.
I.
Baturynska
,
O.
Semeniuta
, and
K.
Wang
, “
Application of machine learning methods to improve dimensional accuracy in additive manufacturing
,” in
Lecture Notes in Electrical Engineering
(
Springer Verlag
, Singapore,
2019
), pp.
245
252
.
40.
N.
Béraud
,
F.
Vignat
,
F.
Villeneuve
, and
R.
Dendievel
, “
Improving dimensional accuracy in EBM using beam characterization and trajectory optimization
,”
Addit. Manuf.
14
,
1
6
(
2017
).
41.
L.
Cao
,
J.
Li
,
J.
Hu
,
H.
Liu
,
Y.
Wu
, and
Q.
Zhou
, “
Optimization of surface roughness and dimensional accuracy in LPBF additive manufacturing
,”
Opt. Laser Technol.
142
,
107246
(
2021
).
42.
W.
Zhang
,
F.
Liu
,
F.
Liu
,
C.
Huang
,
H.
Zheng
,
Q.
Zhang
,
Y.
Zheng
, and
J.
Gao
, “
Microstructural evolution and cracking behavior of Hastelloy X superalloy fabricated by laser directed energy deposition
,”
J. Alloys Compd.
905
,
164179
(
2022
).
43.
B.
Guo
,
Y.
Zhang
,
Z.
Yang
,
D.
Cui
,
F.
He
,
J.
Li
,
Z.
Wang
,
X.
Lin
, and
J.
Wang
, “
Cracking mechanism of Hastelloy X superalloy during directed energy deposition additive manufacturing
,”
Addit. Manuf.
55
,
102792
(
2022
).
44.
G. W.
Park
,
S.
Shin
,
J. Y.
Kim
,
Y. M.
Koo
,
W.
Lee
,
K. A.
Lee
,
S. S.
Park
, and
J. B.
Jeon
, “
Analysis of solidification microstructure and cracking mechanism of a matrix high-speed steel deposited using directed-energy deposition
,”
J. Alloys Compd.
907
,
164523
(
2022
).
45.
G.
Zhang
,
X.
Lu
,
J.
Li
,
J.
Chen
,
X.
Lin
,
M.
Wang
,
H.
Tan
, and
W.
Huang
, “
In-situ grain structure control in directed energy deposition of Ti6Al4V
,”
Addit. Manuf.
55
,
102865
(
2022
).
46.
D.
Clark
,
M. T.
Whittaker
, and
M. R.
Bache
, “
Microstructural characterization of a prototype titanium alloy structure processed via direct laser deposition (DLD)
,”
Metall. Mater. Trans. B: Process Metall. Mater. Process. Sci.
43
,
388
396
(
2012
).
47.
N.
Eshawish
,
S.
Malinov
,
W.
Sha
, and
P.
Walls
, “
Microstructure and mechanical properties of Ti-6Al-4V manufactured by selective laser melting after stress relieving, Hot isostatic pressing treatment, and post-heat treatment
,”
J. Mater. Eng. Perform.
30
,
5290
5296
(
2021
).
48.
See supplementary material at https://www.scitation.org/doi/suppl/10.2351/7.0000870 for all measurements recorded in macro dimensional accuracy of Ti6Al4V parts manufactured by wire-feed high layer thickness continuous laser directed energy deposition.

Supplementary Material

You do not currently have access to this content.