The purpose of this work is to study the microstructure and electrochemical performance of 316L stainless steel fabricated by the laser powder bed fusion (LPBF) and commercial rolling (Roll) in 0.5M nitric acid solution. The LPBF-manufactured 316L stainless steel had a higher corrosion resistance in nitric acid solution than the Roll steel. According to the electrochemical studies, the impedance modulus (|Z|10mHz) of the LPBF alloy was twice as great as its roll counterpart after 1 day of immersion in nitric acid solution and about 1 kΩ cm2. Moreover, the potentiodynamic polarization test showed that the LPBF alloy had one-fourth the ipass value as the Roll sample, suggesting that the passive layer on the surface of additive manufactured samples is more stable and enriched with Cr2O3. Additionally, the LPBF microstructure did not contain harmful phases like TiN, which can adversely affect the protection performance of the passive layer.

1.
R.
Kumar
,
M.
Kumar
, and
J. S.
Chohan
, “
Material-specific properties and applications of additive manufacturing techniques: A comprehensive review
,”
Bull. Mater. Sci.
44
,
181
(
2021
).
2.
B.
Blakey-Milner
,
P.
Gradl
,
G.
Snedden
,
M.
Brooks
,
J.
Pitot
,
E.
Lopez
,
M.
Leary
,
F.
Berto
, and
A.
du Plessis
, “
Metal additive manufacturing in aerospace: A review
,”
Mater. Des.
209
,
110008
(
2021
).
3.
M.
Yakout
,
M. A.
Elbestawi
, and
S. C.
Veldhuis
, “
A review of metal additive manufacturing technologies
,”
Solid State Phenom.
278
,
1
14
(
2018
).
4.
M. H.
Shaeri Karimi
,
M.
Yeganeh
,
S. R.
Alavi Zaree
, and
M.
Eskandari
, “
Corrosion behavior of 316L stainless steel manufactured by laser powder bed fusion (L-PBF) in an alkaline solution
,”
Opt. Laser Technol.
138
,
106918
(
2021
).
5.
B.
Li
,
T.
Wang
,
P.
Li
,
S.
Wang
, and
L.
Wang
, “
Selective laser melting of 316L stainless steel: Influence of Co-Cr-Mo-W addition on corrosion resistance
,”
Metals (Basel)
11
,
597
(
2021
).
6.
M.
Yeganeh
,
M. T.
Shoushtari
, and
P.
Jalali
, “
Evaluation of the corrosion performance of selective laser melted 17-4 precipitation hardening stainless steel in ringer’s solution
,”
J. Laser Appl.
33
,
42001
(
2021
).
7.
M. T.
Shoushtari
,
M.
Yeganeh
, and
D. G.
Kotoki
, “
Enhanced corrosion resistance of 17-4 PH stainless steel fabricated by laser powder bed fusion in H2SO4 solution
,”
J. Laser Appl.
34
,
022023
(
2022
).
8.
J.
Mutua
,
S.
Nakata
,
T.
Onda
, and
Z.
Chen
, “
Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel
,”
Mater. Des.
139
,
486
497
(
2017
).
9.
J.
Stroßner
,
M.
Terock
, and
U.
Glatzel
, “
Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM)
,”
Adv. Eng. Mater.
17
,
1099
1105
(
2015
).
10.
J.
Zhang
,
B.
Song
,
Q.
Wei
,
D.
Bourell
, and
Y.
Shi
, “
A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends
,”
J. Mater. Sci. Technol. Technol.
35
,
270
284
(
2019
).
11.
W.-n.
Zhang
,
L.-z.
Wang
,
Z.-x.
Feng
, and
Y.-m
. Chen
, “
Research progress on selective laser melting (SLM) of magnesium alloys: A review
,”
Optik (Stuttg)
207
,
163842
(
2020
).
12.
B. L.
Zhang
and
H.
Attar
, “
Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review
,”
Adv. Eng. Mater.
18
,
463
475
(
2016
).
13.
M.
Kahvazi
,
M.
Yeganeh
, and
M.
Tavakoli
, “
Microstructure, corrosion behavior, and biocompatibility of Ti-6Al-4V alloy fabricated by LPBF and EBM techniques
,”
Mater. Today Commun.
31
,
103502
(
2022
).
14.
S. M.
Jazaeri Moghadas
,
M.
Yeganeh
,
S. R. A.
Zaree
, and
M.
Eskandari
, “
The influence of heat treatment on the microstructure and corrosion behavior of selective laser melted 316L stainless steel in Ringer’s solution
,”
Surf. Topogr. Metrol. Prop.
10
,
025012
(
2022
).
15.
J.
Suryawanshi
,
T.
Baskaran
,
O.
Prakash
,
S. B.
Arya
, and
U.
Ramamurty
, “
On the corrosion resistance of some selective laser melted alloys
,”
Materialia
3
,
153
161
(
2018
).
16.
J.
Suryawanshi
,
K. G.
Prashanth
, and
U.
Ramamurty
, “
Mechanical behavior of selective laser melted 316L stainless steel
,”
Mater. Sci. Eng., A
696
,
113
121
(
2017
).
17.
E.
Otero
,
A.
Pardo
, and
E.
Saenz
, “
A study of the influence of nitric acid concentration on the corrosion resistance of sintered austenitic stainless steel
,”
Corros. Sci.
38
,
1485
1493
(
1996
).
18.
J.
Liu
,
T.
Zhang
,
G.
Meng
,
Y.
Shao
, and
F.
Wang
, “
Effect of pitting nucleation on critical pitting temperature of 316L stainless steel by nitric acid passivation
,”
Corros. Sci.
91
,
232
244
(
2015
).
19.
R.
Priya
,
C.
Mallika
, and
U. K.
Mudali
, “
Corrosion behavior of sensitized 304 SS in nitric acid medium containing oxidizing ions
,”
Trans. Indian Inst. Met.
67
,
459
467
(
2014
).
20.
A.
Fattah-alhosseini
,
M. A.
Sonamia
,
A.
Loghmani
, and
F. Z.
Shoja
, “
Passivity of AISI 316L stainless steel as a function of nitric concentration
,”
J. Adv. Mater. Process.
2
,
21
30
(
2014
).
21.
N.
Hara
,
K.
Hirabayashi
,
Y.
Sugawara
, and
I.
Muto
, “
Improvement of pitting corrosion resistance of type 316L stainless steel by potentiostatic removal of surface MnS inclusions
,”
Int. J. Corros.
2012
,
482730
(
2012
).
22.
J. R.
Trelewicz
,
G. P.
Halada
,
O. K.
Donaldson
, and
G.
Manogharan
, “
Microstructure and corrosion resistance of laser additively manufactured 316L stainless steel
,”
JOM
68
,
850
859
(
2016
).
23.
M.
Atapour
,
X.
Wang
,
K.
Färnlund
,
I.
Odnevall
, and
Y.
Hedberg
, “
Corrosion and metal release investigations of selective laser melted 316L stainless steel in a synthetic physiological fluid containing proteins and in diluted hydrochloric acid
,”
Electrochim. Acta
354
,
136748
(
2020
).
24.
M.
Yeganeh
,
M. H.
Rezvani
, and
S. M.
Laribaghal
, “
Electrochemical behavior of additively manufactured 316L stainless steel in H2SO4 solution containing methionine as an amino acid
,”
Colloids Surf., A
627
,
127120
(
2021
).
25.
M.
Kazazi
,
M.
Haghighi
,
D.
Yarali
, and
M. H.
Zaynolabedini
, “
Improving corrosion resistance of 316L austenitic stainless steel using ZrO2 Sol-Gel coating in nitric acid solution
,”
J. Mater. Eng. Perform.
27
,
1093
1102
(
2017
).
26.
M.
Saremi
and
M.
Yeganeh
, “
Investigation of corrosion behaviour of nanostructured copper thin film produced by radio frequency sputtering
,”
Micro Nano Lett.
5
,
70
75
(
2010
).
27.
M.
Yeganeh
,
M.
Omidi
, and
T.
Rabizadeh
, “
Anti-corrosion behavior of epoxy composite coatings containing molybdate-loaded mesoporous silica
,”
Prog. Org. Coat.
126
,
18
27
(
2019
).
28.
Z.
Sun
,
X.
Tan
,
S. B.
Tor
, and
C. K.
Chua
, “
Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting
,”
NPG Asia Mater.
10
,
127
136
(
2018
).
29.
X.
Chen
,
W.
Mu
,
X.
Xu
,
W.
Liu
,
L.
Huang
, and
H.
Li
, “
Numerical analysis of double track formation for selective laser melting of 316L stainless steel
,”
Appl. Phys. A
127
,
586
(
2021
).
30.
L. E.
Rännar
,
A.
Koptyug
,
J.
Olsén
,
K.
Saeidi
, and
Z.
Shen
, “
Hierarchical structures of stainless steel 316L manufactured by electron beam melting
,”
Addit. Manuf.
17
,
106
112
(
2017
).
31.
H. E.
Sabzi
,
N. T.
Aboulkhair
,
X.
Liang
,
X.
Li
,
M.
Simonelli
,
H.
Fu
, and
P. E. J.
Rivera-Díaz-del-Castillo
, “
Grain refinement in laser powder bed fusion: The influence of dynamic recrystallization and recovery
,”
Mater. Des.
196
,
109181
(
2020
).
32.
K. G.
Prashanth
and
J.
Eckert
, “
Formation of metastable cellular microstructures in selective laser melted alloys
,”
J. Alloys Compd.
707
,
27
34
(
2017
).
33.
C.
Qiu
,
M.
Al Kindi
,
A. S.
Aladawi
, and
I.
Al Hatmi
, “
A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel
,”
Sci. Rep.
8
,
7785
(
2018
).
34.
A. A.
Tiamiyu
,
U.
Eduok
,
J. A.
Szpunar
, and
A. G.
Odeshi
, “
Corrosion behavior of metastable AISI 321 austenitic stainless steel: Investigating the effect of grain size and prior plastic deformation on its degradation pattern in saline media
,”
Sci. Rep.
9
,
12116
(
2019
).
35.
K.
Devendranath Ramkumar
,
B.
Pavan
, and
V.
Chandrasekar
, “
Development of improved microstructural traits and mechanical integrity of stabilized stainless steel joints of AISI 321
,”
J. Manuf. Process.
32
,
582
594
(
2018
).
36.
K.
Saeidi
,
X.
Gao
,
Y.
Zhong
, and
Z. J.
Shen
, “
Hardened austenite steel with columnar sub-grain structure formed by laser melting
,”
Mater. Sci. Eng., A
625
,
221
229
(
2015
).
37.
E.
Liverani
and
A. H. A.
Lutey
, “
The effects of hot isostatic pressing (HIP) and solubilization heat treatment on the density, mechanical properties, and microstructure of austenitic stainless steel parts produced by selective laser melting (SLM)
,”
Int. J. Adv. Manuf. Technol.
107
,
109
122
(
2020
).
38.
M.
Saremi
and
M.
Yeganeh
, “
Corrosion behavior of copper thin films deposited by EB-PVD technique on thermally grown silicon dioxide and glass in hydrochloric acid media
,”
Mater. Chem. Phys.
123
,
456
462
(
2010
).
39.
Z.
Shahryari
,
K.
Gheisari
,
M.
Yeganeh
, and
B.
Ramezanzadeh
, “
Corrosion mitigation ability of differently synthesized polypyrrole (PPy-FeCl3 & PPy-APS) conductive polymers modified with Na2MoO4 on mild steel in 3.5% NaCl solution: Comparative study and optimization
,”
Corros. Sci.
193
,
109894
(
2021
).
40.
M.
Yeganeh
and
M.
Saremi
, “
Corrosion inhibition of magnesium using biocompatible alkyd coatings incorporated by mesoporous silica nanocontainers
,”
Prog. Org. Coat.
79
,
25
30
(
2015
).
41.
Z.
Shahryari
,
K.
Gheisari
,
M.
Yeganeh
, and
B.
Ramezanzadeh
, “
Moo4 2−-doped oxidative polymerized pyrrole-graphene oxide core-shell structure synthesis and application for dual-barrier & active functional epoxy-coating construction
,”
Prog. Org. Coat.
167
,
106845
(
2022
).
42.
M.
Yeganeh
and
A.
Keyvani
, “
The effect of mesoporous silica nanocontainers incorporation on the corrosion behavior of scratched polymer coatings
,”
Prog. Org. Coat.
90
,
296
303
(
2016
).
43.
M.
Saremi
and
M.
Yeganeh
, “
Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings
,”
Corros. Sci.
86
,
159
170
(
2014
).
44.
R. I.
Revilla
,
M.
Van Calster
,
M.
Raes
,
G.
Arroud
,
F.
Andreatta
,
L.
Pyl
,
P.
Guillaume
, and
I.
De Graeve
, “
Microstructure and corrosion behavior of 316L stainless steel prepared using different additive manufacturing methods: A comparative study bringing insights into the impact of microstructure on their passivity
,”
Corros. Sci.
176
,
108914
(
2020
).
45.
M. J. K.
Lodhi
,
K. M.
Deen
, and
W.
Haider
, “
Corrosion behavior of additively manufactured 316L stainless steel in acidic media
,”
Materialia
2
,
111
121
(
2018
).
46.
K. M.
Deen
,
M. J. K.
Lodhi
,
E.
Asselin
, and
W.
Haider
, “
Charge transport characteristics of the passive oxide film formed on 3D printed 316L stainless steel in the presence of Fe II/Fe III species
,”
J. Phys. Chem. C
124
,
21435
21445
(
2020
).
47.
D. G.
Li
,
J. D.
Wang
, and
D. R.
Chen
, “
Influence of pH value on the structure and electronic property of the passive film on 316L SS in the simulated cathodic environment of proton exchange membrane fuel cell (PEMFC)
,”
Int. J. Hydrogen Energy
39
,
20105
20115
(
2014
).
48.
A. P.
Grosvenor
,
B. A.
Kobe
,
N. S.
McIntyre
,
S.
Tougaard
, and
W. N.
Lennard
, “
Use of QUASESTM/XPS measurements to determine the oxide composition and thickness on an iron substrate
,”
Surf. Interface Anal.
36
,
632
639
(
2004
).
49.
S.
Esmailzadeh
,
M.
Aliofkhazraei
, and
H.
Sarlak
, “
Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A review
,”
Prot. Met. Phys. Chem. Surf.
54
,
976
989
(
2018
).
50.
Z.
Yang
,
B.
Kan
,
J.
Li
,
Y.
Su
,
L.
Qiao
, and
A. A.
Volinsky
, “
A statistical study on the effect of hydrostatic pressure on metastable pitting corrosion of X70 pipeline steel
,”
Materials (Basel)
10
,
1307
(
2017
).
51.
G.
Chi
,
D.
Yi
, and
H.
Liu
, “
Effect of roughness on electrochemical and pitting corrosion of Ti-6Al-4V alloy in 12
wt.% HCl solution at 35
°C
,”
J. Mater. Res. Technol.
9
,
1162
1174
(
2020
).
52.
G.
Sridhar
,
N.
Birbilis
, and
V. S.
Raja
, “
The reliability of metastable pit sizes estimated from dissolution current in aluminium alloys
,”
Corros. Sci.
182
,
109276
(
2021
).
53.
M.
Yeganeh
,
I.
Khosravi-Bigdeli
,
M.
Eskandari
, and
S. R.
Alavi Zaree
, “
Corrosion inhibition of L-methionine amino acid as a green corrosion inhibitor for stainless steel in the H2SO4 solution
,”
J. Mater. Eng. Perform.
29
,
3983
3994
(
2020
).
You do not currently have access to this content.