Generating multimaterial parts, reaching higher efficiency in powder consumption, and decoupling of powder application behavior from powder properties such as powder flowability are key aspects for using electrophotographic powder application (EPA) in laser-based powder bed fusion of polymers (PBF-LB/P). Moreover, EPA allows the layer thickness to be reduced from around 100–150 μm, depending on respective particle size distribution, in the case of conventional doctor blade or roller-based powder application methods to the diameter of the applied polymer particles (typically between 50 and 130 μm). This can have positive effects on the interlayer connection and, therefore, the mechanical properties of the additively manufactured part because less powder volume has to be fused with the already generated underlying part. Moreover, due to the above-mentioned independence of EPA from powder flowability, the addition of flow aids, such as nano silica, can be reduced to a minimum or even avoided completely. This is the first comprehensive study on resulting properties of parts generated by PBF-LB/P using EPA taking into account both the reduction in layer thickness and reduced addition of flow aids. In addition to improving mechanical properties of generated parts, the independence of powder flowability, in particular, offers the possibility of qualifying currently unsuitable materials for PBF-LB/P. For this purpose, besides widely employed polyamide 12 (PA12), a polypropylene (PP) powder is used that is very difficult to process in conventional PBF-LB/P and can only be applied there with the help of flow aids.

1.
S. H.
Huang
,
P.
Liu
,
A.
Mokasdar
, and
L.
Hou
, “
Additive manufacturing and its societal impact: A literature review
,”
Int. J. Adv. Manuf. Technol.
67
,
1191
1203
(
2013
).
2.
U. M.
Dilberoglu
,
B.
Gharehpapagh
,
U.
Yaman
, and
M.
Dolen
, “
The role of additive manufacturing in the era of industry 4.0
,”
Proc. Manuf.
11
,
545
554
(
2017
).
3.
S. M. H.
Hashemi
,
U.
Babic
,
P.
Hadikhani
, and
D.
Psaltis
, “
The potentials of additive manufacturing for mass production of electrochemical energy systems
,”
Curr. Opin. Electrochem.
20
,
54
59
(
2020
).
4.
P.
Robles-Martinez
,
X.
Xu
,
S. J.
Trenfield
,
A.
Awad
,
A.
Goyanes
, R. Telford,
A. W.
Basit
, and
S.
Gaisford
, “
3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method
,”
Pharmaceutics
11
(
6
),
274
(
2019
).
5.
U.
Fasel
,
D.
Keidel
,
L.
Baumann
,
G.
Cavolina
,
M.
Eichenhofer
, and
P.
Ermanni
, “
Composite additive manufacturing of morphing aerospace structures
,”
Manuf. Lett.
23
,
85
88
(
2020
).
6.
M.
Delic
and
D. R.
Eyers
, “
The effect of additive manufacturing adoption on supply chain flexibility and performance: An empirical analysis from the automotive industry
,”
Int. J. Prod. Econ.
228
,
107689
(
2020
).
7.
S.
Haeri
,
Y.
Wang
,
O.
Ghita
, and
J.
Sun
, “
Discrete element simulation and experimental study of powder spreading process in additive manufacturing
,”
Powder Technol.
306
,
45
54
(
2017
).
8.
C.
Wei
and
L.
Li
, “
Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion
,”
Virtual Phys. Prototyp.
16
,
347
371
(
2021
).
9.
H.
Chen
,
Q.
Wei
,
Y.
Zhang
,
F.
Chen
,
Y.
Shi
, and
W.
Yan
, “
Powder-spreading mechanisms in powder-bed-based additive manufacturing: Experiments and computational modeling
,”
Acta Mater.
179
,
158
171
(
2019
).
10.
M. Y.
Shaheen
,
A. R.
Thornton
,
S.
Luding
, and
T.
Weinhart
, “
The influence of material and process parameters on powder spreading in additive manufacturing
,”
Powder Technol.
383
,
564
583
(
2021
).
11.
P.
Mognol
,
D.
Lepicart
, and
N.
Perry
, “
Rapid prototyping: Energy and environment in the spotlight
,”
Rapid Prototyp. J.
12
,
26
34
(
2006
).
12.
A. S.
Gogate
and
S. S.
Pande
, “
Intelligent layout planning for rapid prototyping
,”
Int. J. Prod. Res.
46
,
5607
5631
(
2008
).
13.
S. M.
Hur
,
K. H.
Choi
,
S. H.
Lee
, and
P. K.
Chang
, “
Determination of fabricating orientation and packing in SLS process
,”
J. Mater. Process. Technol.
112
,
236
243
(
2001
).
14.
K.
Kellens
,
R.
Renaldi
,
W.
Dewulf
,
J. P.
Kruth
, and
J. R.
Duflou
, “
Environmental impact modeling of selective laser sintering processes
,”
Rapid Prototyp. J.
20
,
459
470
(
2014
).
15.
K.
Wudy
and
D.
Drummer
, “
Aging effects of polyamide 12 in selective laser sintering: Molecular weight distribution and thermal properties
,”
Addit. Manuf.
25
,
1
9
(
2019
).
16.
K.
Dotchev
and
W.
Yusoff
, “
Recycling of polyamide 12 based powders in the laser sintering process
,”
Rapid Prototyp. J.
15
,
192
203
(
2009
).
17.
F. M.
Mwania
,
M.
Maringa
, and
K.
Van Der Walt
, “
A review of methods used to reduce the effects of high temperature associated with polyamide 12 and polypropylene laser sintering
,”
Adv. Polym. Technol.
2020
,
1
11
.
18.
R. D.
Goodridge
,
C. J.
Tuck
, and
R. J. M.
Hague
, “
Laser sintering of polyamides and other polymers
,”
Prog. Mater. Sci.
57
,
229
267
(
2012
).
19.
T. Kigure and T. Niino, “Improvement of recycle rate in laser sintering by low temperature process,” in Collections of International Solid Freeform Fabrication Symposium (2017).
20.
L.
Wang
,
A.
Kiziltas
,
D. F.
Mielewski
,
E. C.
Lee
, and
D. J.
Gardner
, “
Closed-loop recycling of polyamide12 powder from selective laser sintering into sustainable composites
,”
J. Cleaner Prod.
195
,
765
772
(
2018
).
21.
A.
Awad
,
F.
Fina
,
A.
Goyanes
,
S.
Gaisford
, and
A. W.
Basit
, “
3D printing: Principles and pharmaceutical applications of selective laser sintering
,”
Int. J. Pharm.
586
,
119594
(
2020
).
22.
N. A.
Charoo
,
S. F.
Barakh Ali
,
E. M.
Mohamed
,
M. A.
Kuttolamadom
,
T.
Ozkan
,
M. A.
Khan
, and
Z.
Rahman
, “
Selective laser sintering 3D printing—An overview of the technology and pharmaceutical applications
,”
Drug Dev. Ind. Pharm.
46
,
869
877
(
2020
).
23.
M.
Schmid
and
K.
Wegener
, “
Additive manufacturing: Polymers applicable for laser sintering (LS)
,”
Proc. Eng.
149
,
457
464
(
2016
).
24.
L.
Schelhorn
,
M.
Gosch
,
L.
Debeugny
,
P.
Schröter
, and
W.
Schwarz
, “
Soller S optimal design and process simulation for additive manufacturing
.” in
8th European Conference For Aeronautics and Space Sciences (EUCASS)
(2019).
25.
L. J.
Tan
,
W.
Zhu
, and
K.
Zhou
, “
Recent progress on polymer materials for additive manufacturing
,”
Adv. Funct. Mater.
30
,
2003062
(
2020
).
26.
M.
Schneck
,
M.
Horn
,
M.
Schmitt
,
C.
Seidel
,
G.
Schlick
, and
G.
Reinhart
, “
Review on additive hybrid- and multi-material-manufacturing of metals by powder bed fusion: State of technology and development potential
,”
Prog. Addit. Manuf.
6
,
881
894
(
2021
).
27.
V. A.
Kumar
,
A.
Dutta
, and
J. E.
Fay
, “
Electrophotographic printing of part and binder powders
,”
Rapid Prototyp. J.
10
,
7
13
(
2004
).
28.
T.
Stichel
,
C.
Brachmann
,
M.
Raths
,
M. A.
Dechet
,
J.
Schmidt
,
W.
Peukert
,
T.
Frick
, and
S.
Roth
, “
Electrophotographic multilayer powder pattern deposition for additive manufacturing
,”
JOM
72
,
1366
1375
(
2020
).
29.
S. P.
Kopp
,
T.
Stichel
,
S.
Roth
, and
M.
Schmidt
, “
Investigation of the electrophotographic powder deposition through a transfer grid for efficient additive manufacturing
,”
Proc. CIRP
94
,
122
127
(
2020
).
30.
D. M.
Pai
and
B. E.
Springett
, “
Physics of electrophotography
,”
Rev. Mod. Phys.
65
,
163
211
(
1993
).
31.
M. M.
Shahin
, “
Mass-spectrometric studies of corona discharges in air at atmospheric pressures
,”
J. Chem. Phys.
45
,
2600
(
1966
).
32.
S.
Matsusaka
and
H.
Masuda
, “
Electrostatics of particles
,”
Adv. Powder Technol.
14
,
143
166
(
2003
).
33.
T.
Stichel
,
B.
Geißler
,
J.
Jander
,
T.
Laumer
,
T.
Frick
, and
S.
Roth
, “
Electrophotographic multi-material powder deposition for additive manufacturing
,”
J. Laser Appl.
30
,
032306
(
2018
).
34.
V. A.
Kumar
and
A.
Dutta
, “
Investigation of an electrophotography based rapid prototyping technology
,”
Rapid Prototyp. J.
9
,
95
103
(
2003
).
35.
D.
Drummer
,
S.
Greiner
,
M.
Zhao
, and
K.
Wudy
, “
A novel approach for understanding laser sintering of polymers
,”
Addit. Manuf.
27
,
379
388
(
2019
).
36.
T.
Laumer
,
T.
Stichel
,
P.
Amend
, and
M.
Schmidt
, “
Simultaneous laser beam melting of multimaterial polymer parts
,”
J. Laser Appl.
27
,
S29204
(
2015
).
37.
T.
Laumer
,
T.
Stichel
,
D.
Riedlbauer
,
P.
Amend
,
J.
Mergheim
, and
M.
Schmidt
, “
Realization of multi-material polymer parts by simultaneous laser beam melting
,”
J. Laser Micro/Nanoeng.
10
,
140
147
(
2015
).
38.
J. A.
Giacometti
and
O. N.
Oliveira
, “
Corona charging of polymers
,”
IEEE Trans. Electr. Insul.
27
,
924
943
(
1992
).
39.
R. M.
Faria
,
A.
Jorge
, and
O. N.
Oliveira
, “
A novel space-charge effect in thermally stimulated current measurements on β-PVDF
,”
J. Phys. D: Appl. Phys.
23
,
334
337
(
1990
).
40.
H. A.
Pohl
, “
The motion and precipitation of suspensoids in divergent electric fields
,”
J. Appl. Phys.
22
,
869
871
(
1951
).
41.
T. W.
Dakin
, “
Breakdown of gases in uniform fields, Paschen curves for nitrogen, air and sulphur-hexafluoride
,”
Electra
32
,
64
70
(
1974
).
42.
A.
Cserátony-Hoffer
, “
Über den mechanismus des polaritatseffektes in der durchschlagspannung von gasen
,”
Period. Polytech. Electron. Eng.
5
,
357
372
(
1961
).
43.
A.
Rakowska
and
K.
Hajdrowski
, “
Influence of different test conditions on volume resistivity of polymeric insulated cables and polyethylene samples
,”
IEEE Conf. Publ.
281
284
(
2000
).
44.
A. R.
Blythe
, “
Electrical resistivity measurements of polymer materials
,”
Polym. Test.
4
,
195
209
(
1984
).
45.
L. J.
Tan
,
W.
Zhu
,
K.
Sagar
, and
K.
Zhou
, “
Comparative study on the selective laser sintering of polypropylene homopolymer and copolymer: Processability, crystallization kinetics, crystal phases and mechanical properties
,”
Addit. Manuf.
37
,
101610
(
2021
).
You do not currently have access to this content.