The water-assisted laser processing of carbon fiber-reinforced plastics (CFRPs) can reduce thermal damage. However, the machining quality and efficiency will be reduced by laser-induced cavitation bubbles when laser processing in the water. A method of in situ ultrasonic vibration-assisted laser processing of CFRPs in the ethanol solution was proposed to reduce the adverse effect of cavitation bubbles on machining. The influence of process parameters on machining was studied by the design of experiments. The dynamic ablation behavior of the laser-ablated area was captured in situ by a high-speed camera. The machining mechanism was analyzed. The results show that the volume of the cavitation bubble is reduced in the ethanol solution, and the laser scattering is reduced. The machining quality is improved. When the volume fraction of ethanol exceeds 40%, the laser extinction rate is increased by the accumulation of cavitation bubbles. The heat-affected zone (HAZ) and the etching depth were reduced by 57% and 25%, respectively. The ultrasonic vibration can explode the cavitation bubble, and the interference of the cavitation bubble to the laser is reduced. The effect of mechanical erosion is enhanced. The etching depth was increased by 119%. The cooling effect of the ablated area is enhanced by ultrasonic vibration. The HAZ is reduced by 57%. According to the findings of this study, the material deposition can be effectively reduced when the method of the paper is used, a clean groove is generated, the fiber pull-out is improved, and better machining quality can be obtained.

1.
C.
Soutis
, “
Fibre reinforced composites in aircraft construction
,”
Prog. Aerosp. Sci.
41
,
143
151
(
2005
).
2.
H.
Sasai
and
H.
Tanaka
, “
Improvement of boring quality of CFRP and evaluation of tool wear by inclined planetary milling
,”
Proc. CIRP
77
,
311
314
(
2018
).
3.
H. F.
Ning
,
H. L.
Zheng
,
S. G.
Zhang
, and
X. M.
Yuan
, “
Milling force prediction model development for CFRP multidirectional laminates and segmented specific cutting energy analysis
,”
Int. J. Adv. Manuf. Technol.
113
,
2437
2445
(
2021
).
4.
F. J.
Wang
,
G. G.
Bi
, and
F. D.
Ning
, “
Modeling of dynamic milling forces considering the interlaminar effect during milling multidirectional CFRP laminate
,”
J. Reinf. Plast. Compos.
40
,
437
449
(
2020
).
5.
Y. L.
He
,
H. A.
Qing
,
S. G.
Zhang
,
D. Z.
Wang
, and
S. W.
Zhu
, “
The cutting force and defect analysis in milling of carbon fiber-reinforced polymer (CFRP) composite
,”
Int. J. Adv. Manuf. Technol.
93
,
1829
1842
(
2017
).
6.
M.
Monoranu
,
S.
Ashworth
,
R.
M’Saoubi
,
J. P.
Fairclough
,
K.
Kerrigan
,
R. J.
Scaife
,
S.
Barnes
, and
H.
Ghadbeigi
, “
A comparative study of the effects of milling and abrasive water jet cutting on flexural performance of CFRP
,”
Proc. CIRP
85
,
277
283
(
2019
).
7.
H. A.
Youssef
,
H. A.
EI-Hofy
,
A. M.
Abdelaziz
, and
M. H.
EI-Hofy
, “
Accuracy and surface quality of abrasive waterjet machined CFRP composites
,”
J. Compos. Mater.
55
,
1693
1703
(
2021
).
8.
H.
Dutta
,
K.
Debnath
, and
D. K.
Sarma
, “
A study of material removal and surface characteristics in micro-electrical discharge machining of carbon fiber-reinforced plastics
,”
Polym. Compos.
40
,
4033
4041
(
2019
).
9.
M. J.
Li
,
S.
Li
,
X. J.
Yang
,
Y.
Zhang
, and
Z. C.
Liang
, “
Fiber laser cutting of CFRP laminates with single- and multi-pass strategy: A feasibility study
,”
Opt. Laser Technol.
107
,
443
453
(
2018
).
10.
C.
Leone
and
S.
Genna
, “
Heat affected zone extension in pulsed Nd:YAG laser cutting of CFRP
,”
Compos. Part B: Eng.
140
,
174
182
(
2018
).
11.
S.
Oh
,
I.
Lee
,
Y.-B.
Park
, and
H.
Ki
, “
Investigation of cut quality in fiber laser cutting of CFRP
,”
Opt. Laser Technol.
113
,
129
140
(
2019
).
12.
C.
Leone
,
E.
Mingione
, and
S.
Genna
, “
Laser cutting of CFRP by quasi-continuous wave (QCW) fibre laser: Effect of process parameters and analysis of the HAZ index
,”
Compos. Part B: Eng.
224
,
109146
(
2021
).
13.
M. J.
Li
,
G. C.
Gan
,
Y.
Zhang
, and
X. J.
Yang
, “
Thermal defect characterization and strain distribution of CFRP laminate with open hole following fiber laser cutting process
,”
Opt. Laser Technol.
122
,
105891
(
2020
).
14.
D.
Herzog
,
M.
Schmidt-Lehr
,
M.
Oberlander
,
M.
Canisius
, and
M.
Radek
, “
Laser cutting of carbon fibre reinforced plastics of high thickness
,”
Mater. Des.
92
,
742
749
(
2016
).
15.
A.
Riveiro
,
F.
Quintero
,
F.
Lusquiños
,
V. J.
Del
,
R.
Comesaña
,
M.
Boutinguiza
, and
J.
Pou
, “
Laser cutting of carbon fiber composite materials
,”
Proc. Manuf.
13
,
388
395
(
2017
).
16.
W. T.
Ouyang
,
J. K.
Jiao
,
Z. F.
Xu
,
H. B.
Xia
,
Y. Y.
Ye
,
Qi
Zou
,
R. Y.
Tian
, and
Liyuan
Sheng
, “
Experimental study on CFRP drilling with the picosecond laser ‘double rotation’ cutting technique
,”
Opt. Laser Technol.
142
,
107238
(
2021
).
17.
J. W.
Stock
,
M. F.
Zaeh
, and
J. P.
Spaeth
, “
Remote laser cutting of CFRP: Influence of the edge quality on fatigue strength
,”
Proc. SPIE
8963
,
89630T
(
2014
).
18.
A.
Karimzad Ghavidel
,
M.
Shabgard
, and
H.
Biglari
, “
Microscopic and mechanical properties of semi-crystalline and amorphous polymeric parts produced by laser cutting
,”
J. Appl. Polym. Sci.
133
,
1
11
(
2016
).
19.
A. K.
Ghavidel
,
M.
Shabgard
, and
T.
Azdast
, “
Influence of alignment and dispersion pattern of carbon nanotubes in the polycarbonate and polystyrene matrixes on laser cutting workability
,”
J. Laser Micro/Nanoeng.
11
,
266
275
(
2016
).
20.
A.
Karimzad Ghavidel
,
A.
Navidfar
, and
M.
Shabgard
, “
Role of CO2 laser cutting conditions on anisotropic properties of nanocomposite contain carbon nanotubes
,”
J. Laser Appl.
28
,
032006
(
2016
).
21.
K.
Takahashi
,
M.
Tsukamoto
,
S.
Masuno
, and
Y.
Sato
, “
Heat conduction analysis of laser CFRP processing with IR and UV laser light
,”
Compos. Part A: Appl. Sci. Manuf.
84
,
114
122
(
2016
).
22.
A.
Karimzad Ghavidel
,
T.
Azdast
,
M. R.
Shabgard
, and
A.
Navidfar
, “
Effect of carbon nanotubes on laser cutting of multi-walled carbon nanotubes/poly methyl methacrylate nanocomposites
,”
Opt. Laser Technol.
67
,
119
124
(
2015
).
23.
J. J. J.
Kaakkunen
,
M.
Silvennoine
,
K.
Paivasaari
, and
P.
Vahimaa
, “
Water-assisted femtosecond laser pulse ablation of high aspect ratio holes
,”
Phys. Proc.
12
,
89
93
(
2011
).
24.
V.
Tangwarodomnukun
,
K.
Khamwiset
, and
Q.
Huan
, “
Investigation into laser machining of carbon fiberreinforced plastic in a flowing water layer
,”
Int. J. Adv. Manuf. Technol.
104
,
3629
3645
(
2019
).
25.
V.
Tangwarodomnukun
and
H.-Y.
Chen
, “
Laser ablation of PMMA in air, water, and ethanol environments
,”
Mater. Manuf. Proc.
30
,
685
691
(
2015
).
26.
D.
Zhang
,
B.
Gökce
,
S.
Sommer
,
R.
Streubel
, and
S.
Barcikowski
, “
Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol
,”
Appl. Surf. Sci.
367
,
222
230
(
2016
).
27.
A.
Iqbal
,
G.
Zhao
,
J.
Zaini
,
M.
Jamil
,
M. M.
Nauman
,
A. M.
Khan
,
W.
Zhao
,
N.
He
, and
H.
Suhaimi
, “
CFRP drilling under throttle and evaporative cryogenic cooling and micro-lubrication
,”
Compos. Struct.
267
,
113916
(
2021
).
28.
V.
Tangwarodomnukun
,
K.
Khamwiset
, and
Q.
Huan
, “
Investigation into laser machining of carbon fiber reinforced plastic in a flowing water layer
,”
Int. J. Adv. Manuf. Technol.
104
,
3629
3645
(
2019
).
29.
Y.
Wu
,
G.
Zhang
,
J.
Wang
,
Y.
Chao
, and
W.
Zhang
, “
The cutting process and damage mechanism of large thickness CFRP based on water jet guided laser processing
,”
Opt. Laser Technol.
141
,
107140
(
2021
).
30.
D.
Sun
,
F.
Han
, and
W.
Ying
, “
The experimental investigation of water jet–guided laser cutting of CFRP
,”
Int. J. Adv. Manuf. Technol.
102
,
719
729
(
2019
).
31.
D.
Sun
,
F.
Han
,
W.
Ying
, and
C.
Jin
, “
Surface integrity of water jet guided laser machining of CFRP
,”
Proc. CIRP
71
,
71
74
(
2018
).
32.
L. M.
Wee
,
L. E.
Khoong
,
C. W.
Tan
, and
G. C.
Lim
, “
Solvent-assisted laser drilling of silicon carbide
,”
Int. J. Appl. Ceram. Technol.
8
,
1263
1276
(
2011
).
33.
H. T.
Wang
,
B.
Wang
, and
W. W.
Zhang
, “
Research on water-assisted laser processing of CFRP
,”
Proc. SPIE
11717
,
951
(
2020
).
34.
L. J.
Yang
,
H.
Huang
,
N.
Cai
,
Y.
Wang
, and
J.
Tang
, “
Experimental research on UV laser and high-pressure water-assisted YAG laser dicing SiC wafer
,”
Adv. Mater. Res.
69-70
,
243
247
(
2009
).
35.
B.
Guo
,
J.
Zhang
,
M. T.
Wu
,
Q. L.
Zhao
,
H.
Liu
,
A.
Monier
, and
J.
Wang
, “
Water assisted pulsed laser machining of micro-structured surface on CVD diamond coating tools
,”
J. Manuf. Process.
56
,
591
601
(
2020
).
36.
W.
Charee
,
V.
Tangwarodomnukun
, and
C.
Dumkum
, “
Ultrasonic-assisted underwater laser micromachining of silicon
,”
J. Mater. Process. Technol.
231
,
209
220
(
2016
).
37.
J.
Zhou
,
R. W.
Xu
,
H.
Jiao
,
J. D.
Bao
,
Q. Y.
Liu
, and
Y. H.
Long
, “
Study on the mechanism of ultrasonic-assisted water confined laser micromachining of silicon
,”
Opt. Lasers Eng.
132
,
106118
(
2020
).
38.
M.
Wu
,
X. T.
Tong
,
H.
Wang
,
L.
Hua
, and
Y. Z.
Chen
, “
Effect of ultrasonic vibration on adhesive bonding of CFRP/Al alloy joints grafted with silane coupling agent
,”
Polymers
12
,
947
(
2020
).
39.
Z.
Li
,
D. Y.
Zhang
,
W.
Qin
, and
D. X.
Geng
, “
Removal analyses of chip and rod in rotary ultrasonic-assisted drilling of carbon fiber-reinforced plastics using core drill
,”
J. Reinf. Plast. Compos.
35
,
1173
1190
(
2016
).
40.
R.
Kurniawan
,
S.
Thirumalai Kumaran
,
V.
Arumuga Prabu
,
Y.
Zhen
,
K. M.
park
,
Y. I.
Kwak
,
Md.
Mofizul Islam
, and
T. J.
Ko
, “
Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP composite
,”
Measurement
110
,
98
115
(
2017
).
41.
A.
De Bonis
,
M.
Sansone
,
L.
D’Alessio
,
A.
Galasso
,
A.
Santagata
, and
R.
Teghil
, “
Dynamics of laser-induced bubble and nanoparticles generation during ultra-short laser ablation of Pd in liquid
,”
J. Phys. D: Appl. Phys.
46
,
445301
(
2013
).
42.
J.
Walter
,
M.
Hustedt
,
R.
Staehr
,
S.
Kaierle
,
P.
Jaeschke
,
O.
Suttmann
, and
L.
Overmeyer
, “
Laser cutting of carbon fiber reinforced plastics—Investigation of hazardous process emissions
,”
Phys. Proc.
56
,
1153
1164
(
2014
).
43.
L.-T.
Fan
,
X.-G.
Yuan
,
C.-X.
Zhou
,
A.-W.
Zeng
,
K.-T.
Yu
,
M.
Kalbassi
, and
K.
Porter
, “
Contact angle of ethanol and n-propanol aqueous solutions on metal surfaces
,”
Chem. Eng. Technol.
34
,
1535
1542
(
2011
).
44.
C. F.
Bohren
and
D. R.
Hoffman
,
Absorption and Scattering of Light by Small Particles[M]
(
Wiley
,
New York
,
1983
), pp.
530
531
.
45.
L. C.
Zhang
,
X. L.
Zhu
,
Y. F.
Huang
,
Z.
Liu
, and
K.
Yan
, “
Development of a simple model for predicting the spark-induced bubble behavior under different ambient pressures
,”
J. Appl. Phys.
120
,
043302
(
2016
).
46.
A.
Karimzad Ghavidel
,
M.
Zadshakoyan
,
M.
Arjmand
, and
G.
Kiani
, “
A novel electro-mechanical technique for efficient dispersion of carbon nanotubes in liquid media
,”
Int. J. Mech. Sci.
207
,
106633
(
2021
).
47.
E.
Haddadi
,
M.
Moradi
,
A.
Karimzad Ghavidel
,
A.
Karimzad Ghavidel
, and
S.
Meiabadi
, “
Experimental and parametric evaluation of cut quality characteristics in CO2 laser cutting of polystyrene
,”
Optik
184
,
103
114
(
2019
).
48.
A. K.
Ghavidel
and
M.
Zadshakoyan
, “
Comprehensive study of laser cutting effects on the properties of acrylonitrile butadiene styrene
,”
Int. J. Adv. Manuf. Technol.
97
,
3637
3653
(
2018
).
49.
Q.
Lu
,
S. S.
Mao
,
X.
Mao
, and
R. E.
Russo
, “
Delayed phase explosion during high-power nanosecond laser ablation of silicon
,”
Appl. Phys. Lett.
80
,
3072
3074
(
2002
).
50.
H. W.
Kang
,
H.
Lee
,
S.
Chen
, and
A. J.
Welch
, “
Enhancement of bovine bone ablation assisted by a transparent liquid layer on a target surface
,”
IEEE J. Quantum Electron.
42
,
633
642
(
2006
).
51.
Y.
Ma
,
C.
Xin
,
W.
Zhang
, and
G.
Jin
, “
Experimental study of plasma plume analysis of long pulse laser irradiates CFRP and GFRP composite materials
,”
Crystals
11
,
545
(
2021
).
52.
J.-C.
Isselin
,
A.-P.
Alloncle
, and
M.
Autric
, “
On laser induced single bubble near a solid boundary: Contribution to the understanding of erosion phenomena
,”
J. Appl. Phys.
84
,
5766
5771
(
2022
).
53.
M.
Li
,
S.
Li
,
G.
Gan
,
Y.
Zhang
,
Z.
Liang
, and
X.
Yang
, “
Experimental study on hole quality and tensile progressive failure following fiber laser cutting of multidirectional carbon fiber reinforced plastic laminates
,”
J. Laser Appl.
31
,
012004
(
2019
).
You do not currently have access to this content.