The method for Doppler diagnostics of laser evaporation of biological tissues based on autodyne detection (reception on the laser resonator) of backscattered radiation has been developed. In this method, a laser is simultaneously used both as a source of the destructive action of radiation on biotissues and as a sensor of the backscattered diagnostic signal. This review study discusses the possibilities of Doppler diagnostics in relation to the problems of investigating the processes of laser evaporation of biological tissues in real time and laser surgery. This approach can be used to create an optical-information feedback channel in automated and robotic surgical systems based on pulse-periodic pumped single-mode CO2 lasers. Laser surgical systems with such operational feedback can be used in the development of new approaches to precision low-traumatic and organ-save laser operations.

1.
A. J.
Welch
,
M.
Motamedi
,
S.
Rastegar
,
G. L.
Le Carpentier
, and
D.
Jansen
, “
Laser thermal ablation
,”
Photochem. Photobiol.
53
,
815
823
(
1991
).
2.
Valery
Tuchin
,
Tissue Optics. Light Scattering Methods and Instruments for Medical Diagnosis
(
SPIE
,
Bellingham
,
WA
,
2007
), p.
882
.
3.
V. M.
Gordienko
,
A. K.
Dmitriev
,
A. N.
Konovalov
,
N. N.
Kurochkin
,
Y. Y.
Putivskii
,
V. Y.
Panchenko
, and
V. A.
Ul’yanov
, “
Autodyne effect in the presence of laser-induced hydrodynamic flows and its use in identification of the type of biotissue in the course of its destruction
,”
Quantum Electron.
26
,
846
847
(
1996
).
4.
V. A.
Ul’yanov
,
V. M.
Gordienko
,
A. K.
Dmitriev
,
V. N.
Kortunov
,
V. Y.
Panchenko
,
Y. Y.
Putivskii
, and
Y. A.
Phischyuk
, “
Determination of biotissue type in the course of CO2 laser ablation using backscattered radiation
,”
Proc. SPIE
3195
,
88
93
(
1998
).
5.
S. F.
Jacobs
, “
Optical heterodyne (coherent) detection
,”
Am. J. Phys.
56
,
235
245
(
1988
).
6.
V. M.
Gordienko
,
A. N.
Konovalov
,
N. V.
Kravtsov
,
Y. Y.
Putivskii
,
V. I.
Savin
, and
V. V.
Firsov
, “
Remote Doppler velocimeter based on an YAG: Nd3 + chip laser and its application in a study of laser-induced hydrodynamic flows
,”
Quantum Electron.
28
,
827
831
(
1998
).
7.
J. H.
Nicola
,
E. M. D.
Nicola
,
R.
Viera
,
D. M.
Braile
,
M. M.
Tanabe
, and
D. H. Z.
Baldin
, “
Speed of particles ejected from animal skin by CO2 laser pulses, measured by laser Doppler velocimetry
,”
Phys. Med. Biol.
47
,
847
856
(
2002
).
8.
P. G. R.
King
and
G. J.
Steward
, “
Metrology with an optical maser
,”
New Sci.
17
,
180
182
(
1963
).
9.
M. J.
Rudd
, “
A laser Doppler velocimeter employing the laser as a mixer-oscillator
,”
J. Phys. E: Sci. Instrum.
1
,
723
726
(
1968
).
10.
T. R.
Lawrence
,
D. J.
Wilson
, and
C. E.
Craven
, “
A laser velocimeter for remote wind sensing
,”
Rev. Sci. Instrum.
43
,
512
518
(
1972
).
11.
A. A.
Mak
,
O. A.
Orlov
, and
V. I.
Ustyugov
, “Ultrasensitive intracavity technique of optical measurements and interferometric detection of linear movements with the sensitivity 10-16 m/√Hz,”
Proc. SPIE
1121
,
485
489
(
1989
).
12.
P. A.
Roos
,
M.
Stephens
, and
C. E.
Wieman
, “
Laser vibrometer based on optical-feedback-induced frequency modulation of a single-mode laser diode
,”
Appl. Opt.
35
,
6754
6761
(
1996
).
13.
P. J.
de Groot
,
G. M.
Gallatin
, and
S. H.
Macomber
, “
Ranging and velocimetry signal generation in a backscatter-modulated laser diode
,”
Appl. Opt.
27
,
4475
4480
(
1988
).
14.
T.
Taimre
,
M.
Nikolić
,
K.
Bertling
,
Y. L.
Lim
,
T.
Bosch
, and
A. D.
Rakić
, “
Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing
,”
Adv. Opt. Photonics
7
,
570
631
(
2015
).
15.
S.
Donadello
,
A.
Demir
, and
B.
Previtali
, “
Probing multipulse laser ablation by means of self-mixing interferometry
,”
Appl. Opt.
57
,
7232
7241
(
2018
).
16.
Julien
Perchoux
,
Adam
Quotb
,
Reza
Atashkhooei
,
Francisco J.
Azcona
,
Evelio E.
Ramírez-Miquet
,
Olivier
Bernal
,
Ajit
Jha
,
Antonio
Luna-Arriaga
,
Carlos
Yanez
,
Jesus
Caum
,
Thierry
Bosch
, and
Santiago
Royo
, “
Current developments on optical feedback interferometry as an all-optical sensor for biomedical applications
,”
Sensors
16
,
694
(
2016
).
17.
F. F. M.
de Mul
,
M. H.
Koelink
,
A. L.
Weijers
,
J.
Greve
,
J. G.
Aarnoudse
,
R.
Graaff
, and
A. C. M.
Dassel
, “
Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue
,”
Appl. Opt.
31
,
5844
5851
(
1992
).
18.
S. K.
Özdemir
,
S.
Shinohara
,
S.
Takamiya
, and
H.
Yoshida
, “
Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: In vitro and in vivo experiments
,”
Opt. Eng.
39
,
2574
2580
(
2000
).
19.
D. A.
Usanov
,
O. V.
Mareev
,
A. V.
Skripal
, and
G. O.
Mareev
, “
Laser autodyne measurements of the parameters of eardrum movements
,”
Russ. J. Biomech.
16
,
8
21
(
2012
) (in Russian).
20.
Wang
Kai-xi
,
Cao
Miao
, and
Liu
Bao-ping
, “
A method of human eye parameter measurement based on laser self-mixing interference
,”
J. Russ. Laser Res.
41
,
197
206
(
2020
).
21.
Laura
Rey-Barroso
,
Sara
Peña-Gutiérrez
,
Carlos
Yáñez
,
Francisco J.
Burgos-Fernández
,
Meritxell
Vilaseca
, and
Santiago
Royo
, “
Optical technologies for the improvement of skin cancer diagnosis: A review
,”
Sensors
21
,
252
(
2021
).
22.
G.
Giuliani
,
M.
Norgia
,
S.
Donati
, and
T.
Bosch
, “
Laser diode self-mixing technique for sensing applications
,”
J. Opt. A Pure Appl. Opt.
4
,
S283
(
2002
).
23.
R.
Loudon
,
M.
Harris
,
T. J.
Shepherd
, and
J. M.
Vaughan
, “
Laser-amplifier gain and noise
,”
Phys. Rev. A
48
,
681
701
(
1993
).
24.
V. M.
Gordienko
,
A. N.
Konovalov
, and
V. A.
Ul'yanov
, “
Self-heterodyne detection of backscattered radiation in single-mode CO2 lasers
,”
Quantum Electron.
41
,
433
440
(
2011
).
25.
A. N.
Konovalov
and
V. A.
Ul'yanov
, “
Self-mixing detection of backscattered radiation in single-mode pulse-periodic CO2 lasers
,”
Appl. Opt.
51
,
3900
3906
(
2012
).
26.
A. K.
Dmitriev
,
A. N.
Konovalov
, and
V. A.
Ul’yanov
, “
Autodyne effect in a single-mode Er fibre laser and the possibility of its usage for recognising the evaporated biotissue type
,”
Quantum Electron.
45
,
1132
1136
(
2015
).
27.
V. V.
Vasiltsov
,
V. M.
Gordienko
,
A. K.
Dmitriev
,
V. N.
Kortunov
,
A. N.
Konovalov
,
V. Y.
Panchenko
, and
V. A.
Ul’yanov
, “
Diagnostics of biotissue laser perforation by autodyne detection method of backscattered radiation
,”
Quantum Electron.
32
,
891
896
(
2002
).
28.
Alexey
Konovalov
and
Valerii
Ulyanov
, “
Extraction of the information component of the autodyne signal in pulsed-periodic CO2 lasers for Doppler diagnostics of the surgical process
,”
Adv. Biomed. Eng.
10
,
129
137
(
2021
).
29.
Alexander K.
Dmitriev
,
Alexey N.
Konovalov
,
Vladimir N.
Kortunov
, and
Valery A.
Ulyanov
, “
Possibilities for organizing feedback on the Doppler backscattering signal in surgical CO2 lasers
,”
J. Laser Appl.
32
,
022073
(
2020
).
30.
V. M.
Gordienko
,
N. N.
Kurochkin
,
V. N.
Markov
,
V. Y.
Panchenko
,
G. A.
Pogosov
, and
E. M.
Chastukhin
, “
Doppler backscattered-signal diagnostics of laser-induced surface hydrodynamic processes
,”
Quantum Electron.
25
,
149
152
(
1995
).
31.
D. J.
Taylor
,
N. P. O.
Green
, and
G. W.
Stout
,
Biological Science
(
Cambridge University
, Cambridge,
1990
), Vol. 1, p. 368.
32.
A.
Vogel
and
V.
Venugopalan
, “
Mechanisms of pulsed laser ablation of biological tissues
,”
Chem. Rev.
103
,
577
644
(
2003
).
33.
V. M.
Chudnovskii
,
V. I.
Yusupov
,
A. V.
Dydykin
,
V. I.
Nevozhai
,
A.
Yu. Kisilev
,
S. A.
Zhukov
, and
V. N.
Bagratashvili
, “
Laser-induced boiling of biological liquids in medical technologies
,”
Quantum Electron.
47
,
361
370
(
2017
).
34.
V. M.
Gordienko
,
A. N.
Konovalov
,
Y. Y.
Putivskii
,
V. Y.
Panchenko
,
N. N.
Kurochkin
, and
V. I.
Savin
, “
Investigation of dynamics of laser-induced explosive boiling of water using the autoheterodyning scheme
,”
High Temp.
36
,
789
795
(
1998
).
35.
A. K.
Dmitriev
,
V. N.
Kortunov
, and
V. A.
Ul'yanov
, “
Doppler diagnostics of nonstationary mass removal upon laser ablation of biotissues
,”
Quantum Electron.
31
,
325
326
(
2001
).
36.
E. V.
Ross
,
Y.
Domankevitz
, and
R. R.
Anderson
, “
Effects of heterogeneous absorption of laser radiation in biotissue ablation: Characterization of ablation of fat with a pulsed CO2 laser
,”
Lasers Surg. Med.
21
,
59
64
(
1997
).
37.
V. A.
Ul’yanov
,
V. M.
Gordienko
,
A. K.
Dmitriev
,
V. N.
Kortunov
,
V. Y.
Panchenko
, and
Y. Y.
Putivskii
, “
Doppler diagnostics of processes of biotissue laser ablation
,”
Bull. Russ. Acad. Sci. Phys.
63
,
2066
2071
(
1999
).
38.
A. K.
Dmitriev
,
S. V.
Ivanov
,
A. N.
Konovalov
,
V. N.
Kortunov
,
A. V.
Koshcheev
, and
V. A.
Ul’yanov
, “
Study of particle motion and backscattering signal in plume during laser evaporation of biotissues
,”
Phys. Wave Phenom.
13
,
15
23
(
2005
).
39.
A. K.
Dmitriev
,
A. N.
Konovalov
,
V. N.
Kortunov
, and
V. A.
Ul'yanov
, “
Monitoring of mass ejection at laser ablation of biotissue
,” in
Abstracts Book of VII International Conference on Optics Within Life Sciences
,
Lucerne
, Switzerland, 22–24 May [European Physical Society (EPS), Mulhouse, France,
2002
], pp.
70
71
.
40.
B. S.
Peters
,
P. R.
Armijo
,
C.
Krause
,
S. A.
Choudhury
, and
D.
Oleynikov
, “
Review of emerging surgical robotic technology
,”
Surg. Endosc.
32
,
1636
1655
(
2018
).
41.
Guillermo
Maza
and
Arun
Sharma
, “
Past, present, and future of robotic surgery
,”
Otolaryngol. Clin. North Am.
53
,
935
941
(
2020
).
42.
D.
He
and
D. R.
Hall
, “
A 30-W radio frequency excited waveguide CO2 laser
,”
Appl. Phys. Lett.
43
,
726
728
(
1983
).
43.
S. L.
Pogorelsky
,
V. F.
Lazukin
,
V. F.
Maiboroda
, and
A. M.
Barmashov
, “
Single-mode waveguide gas laser
,”
Proc. SPIE
5137
,
311
316
(
2003
).
44.
P. E.
Dyer
and
H. V.
Snelling
, “
Gas lasers for medical applications
,” in
Helena Jelínková: Lasers for Medical Applications. Diagnostics, Therapy and Surgery
(
Woodhead Publishing
,
Sawston, Cambridge
,
2013
), pp.
177
202
.
45.
C. A.
Solares
and
M.
Strome
, “
Transoral robot-assisted CO2 laser supraglottic laryngectomy: Experimental and clinical data
,”
Laryngoscope
117
,
817
820
(
2007
).
46.
See https://lumenis.com/aesthetics/products/acupulse/ for information on the CO2 laser AcuPulse with a scanning system SurgiTouch.
47.
R.
Colasanti
,
L.
Giannoni
,
S.
Dallar
,
V.
Liverotti
,
D.
Aiudi
,
A.
Di Rienzo
,
F.
Rossi
, and
M.
Iacoangeli
, “
Application of a scanner-assisted carbon dioxide laser system for neurosurgery
,”
World Neurosurg.
153
,
e250
e258
(
2021
).
48.
Giulio
Dagnino
,
Leonardo S.
Mattos
, and
Darwin G.
Caldwell
, “
A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery
,”
Int. J. Comput. Assist. Radiol. Surg.
10
,
217
229
(
2015
).
49.
A. K.
Dmitriev
,
G. A.
Varev
,
A. N.
Konovalov
,
V. N.
Kortunov
,
V. Y.
Panchenko
,
I. V.
Reshetov
,
O. V.
Matorin
,
V. F.
Maiboroda
, and
V. A.
Ul’yanov
, “
Smart CO2 laser surgical system based on autodyne monitoring of laser-evaporated biotissues: First results in oncology
,”
Proc. SPIE
5973
,
59730R
(
2006
).
50.
A. K.
Dmitriev
,
A. N.
Konovalov
,
V. Y.
Panchenko
,
V. A.
Ulyanov
,
G. A.
Varev
,
A. V.
Geynits
,
O. V.
Matorin
,
I. V.
Reshetov
, and
G. S.
Samoshenkov
, “
New approaches to precision and small-traumatic biotissue evaporation using intellectual laser surgical systems
,”
Lazernaya Med. Laser Med.
17
,
4
10
(
2013
) (in Russian).
51.
V. I.
Chissov
,
Handbook on Oncology
(
MIA
,
Moscow
,
2008
), p.
840
(in Russian).
52.
A. I.
Berishvili
,
T. M.
Kochoyan
,
A. K.
Dmitriev
,
A. N.
Konovalov
,
V. A.
Ulyanov
, and
A. G.
Kedrova
, “
CO2 laser in the diagnostics of resection margins in breast tumors
,”
Opukholi zhenskoy reproduktivnoy Syst. (Tumors of Female Reproductive System)
15
,
41
47
(
2019
) (in Russian).
53.
A. K.
Dmitriev
,
A. N.
Konovalov
,
V. N.
Kortunov
, and
V. A.
Ulyanov
, “
An apparatus based on a CO2-laser with feedback for automated precision evaporation of biological tissues
,”
Instrum. Exp. Techn.
65
,
332
335
(
2022
).
You do not currently have access to this content.