The damage of kitchen oil fume to the human body and environment cannot be ignored. Based on laser-induced breakdown spectroscopy (LIBS), five kitchen environments are online in situ detected, including the air scene, fry scene, grill scene, steam scene, and stew scene. In the spectra, characteristic elements such as C, H, O, and N are detected in the fry scene containing oil fume, and metal elements such as Mg, Ca, K, and Na are observed in the grill scene containing charcoal smoke. The spectra of five kitchen environments are tested and compared. In the measurement, except for the air scene, obvious carbon–nitrogen molecular spectral lines are detected. LIBS is combined with principal component analysis and backpropagation artificial neural network system to detect and analyze kitchen fumes. Finally, five kitchen scenes are analyzed and identified based on this system, and the final recognition accuracy is 98.60%.

1.
X. X.
He
, “
Influence of cooking energy for people’s health in rural china: Based on CLDS data in 2014
,”
Energy Rep.
7
,
279
288
(
2021
).
2.
D. B.
Rahut
,
A.
Ali
, and
B.
Behera
, “
Domestic use of dirty energy and its effects on human health: Empirical evidence from Bhutan
,”
Int. J. Sustain. Energy
36
,
983
993
(
2017
).
3.
S. Y.
Chair
,
K. C.
Choi
,
X.
Cao
,
H. Y.
Cheng
,
J. P. C.
Chau
,
T.
Liu
, and
W. T.
Chien
, “
Association between household solid fuel use for cooking and sleep disturbance in rural China: Findings from the China Kadoorie Biobank data
,”
Sleep Med.
83
,
13
20
(
2021
).
4.
Y.
Zhao
,
S. X.
Wang
,
K.
Aunan
,
H. M.
Seip
, and
J. M.
Hao
, “
Air pollution and lung cancer risks in China—A meta-analysis
,”
Sci. Total Environ.
366
,
500
513
(
2006
).
5.
X. F.
Zhang
,
L.
Rao
,
Q. H.
Liu
, and
Q.
Yang
, “
Meta-analysis of associations between cooking oil fumes exposure and lung cancer risk
,”
Indoor Built Environ.
18
,
820
837
(
2021
).
6.
W. P.
Hu
,
J. M.
Ye
,
X. Z.
Chen
,
G. Y.
Wang
,
S.
Li
,
H.
Wang
,
H.
Li
, and
H. P.
Zhang
, “
Dining lampblack treatment processes in China
,”
Processes
9
,
2241
(
2021
).
7.
H. R.
Katragadda
,
A.
Fullana
,
S.
Sidhu
, and
A. A.
Carbonell-Barrachina
, “
Emissions of volatile aldehydes from heated cooking oils
,”
Food Chem.
120
,
59
65
(
2010
).
8.
K.
Vasquez
, “
Measuring atmospheric trace gases using mass spectrometry
,”
Nat. Rev. Earth Environ.
2
,
305
(
2021
).
9.
C. L.
Qiu
,
P.
Asgari
,
X. J.
Mao
,
J.
Jeon
, and
K. A.
Schug
, “
Gas chromatography-vacuum ultraviolet spectroscopic analysis of organosilanes
,”
Talanta
223
,
127181
(
2021
).
10.
J.
Goldschmidt
,
L.
Nitzsche
,
S.
Wolf
,
A.
Lambrecht
, and
J.
Wöllenstein
, “
Rapid quantitative analysis of IR absorption spectra for trace gas detection by artificial neural networks trained with synthetic data
,”
Sensors
22
,
857
(
2022
).
11.
A. H.
Galmed
,
C. M.
Steenkamp
,
I.
Ahmed
,
H.
Von Bergmann
,
M. A.
Harith
, and
M.
Maaza
, “
Matrix effect impact on measuring hardness of metals bombarded by accelerated ions using laser induced breakdown spectroscopy
,”
J. Laser Appl.
32
,
012012
(
2020
).
12.
Q. H.
Zhang
,
Y. Z.
Liu
,
W. Y.
Yin
,
Y. H.
Yan
,
Q. Y.
Tang
, and
J. H.
Xing
, “
The online detection of carbon isotopes by laser-induced breakdown spectroscopy
,”
J. Anal. At. Spectrom.
35
,
341
346
(
2020
).
13.
M. J.
Ma
,
L.
Fang
,
N. J.
Zhao
,
X. J.
Huang
,
D. S.
Meng
,
C. C.
Pan
,
J. G.
Liu
, and
W. Q.
Liu
, “
Simultaneous detection of heavy metals in solutions by electrodeposition assisted laser induced breakdown spectroscopy
,”
J. Laser Appl.
34
,
012021
(
2022
).
14.
E. L.
Wan
,
Z. M.
Sun
, and
Y. Z.
Liu
, “
Real-time in situ detection and source tracing of different soot
,”
Optik
245
,
167711
(
2021
).
15.
I.
Rehan
,
K.
Rehan
,
M. Z.
Khan
,
S.
Sultana
,
R.
Muhammad
, and
H. U.
Khan
, “
Detection of nutritional and toxic elements in Pakistani pepper powders using laser induced breakdown spectroscopy
,”
Anal. Methods
12
,
2590
2598
(
2020
).
16.
G.
Nicolodelli
,
G. S.
Senesi
,
R. A.
Romano
,
I. L. D.
Perazzoli
, and
D.
Milori
, “
Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils
,”
Spectrochim. Acta Part B
111
,
23
29
(
2015
).
17.
F.
Ghasemi
,
P.
Parvin
,
J.
Reif
,
S.
Abachi
,
M. R.
Mohebbifar
, and
M. R.
Razzaghi
, “
Laser induced breakdown spectroscopy for the diagnosis of several malignant tissue samples
,”
J. Laser Appl.
29
,
042005
(
2017
).
18.
Y. Z.
Zhangcheng
,
Y. Z.
Liu
,
S.
Saleem
,
Q. H.
Zhang
,
Y.
Chen
,
Y. F.
Qu
, and
X.
Lu
, “
Online in situ detection and rapid distinguishing of saffron
,”
J. Laser Appl.
32
,
032020
(
2020
).
19.
B.
Salle
,
D. A.
Cremers
,
S.
Maurice
, and
R. C.
Wiens
, “
Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples
,”
Spectrochim. Acta Part B
60
,
479
490
(
2005
).
20.
G. S.
Senesi
, “
Laser-Induced breakdown spectroscopy (LIBS) applied to terrestrial and extraterrestrial analogue geomaterials with emphasis to minerals and rocks
,”
Earth Sci. Rev.
139
,
231
267
(
2014
).
21.
U.
Khulal
,
J. W.
Zhao
,
W. W.
Hu
, and
Q. S.
Chen
, “
Nondestructive quantifying total volatile basic nitrogen (TVB-N) content in chicken using hyperspectral imaging (HSI) technique combined with different data dimension reduction algorithms
,”
Food Chem.
197
,
1191
1199
(
2016
).
22.
H. Y.
Li
,
J. D.
Hu
,
D. D.
Wei
,
X. F.
Wang
, and
Y. H.
Li
, “
Artificial neural network and constitutive equations to predict the hot deformation behavior of modified 2.25Cr-1Mo steel
,”
Mater. Des.
42
,
192
197
(
2012
).
23.
J. Q.
Jia
and
H. B.
Duan
, “
Automatic target recognition system for unmanned aerial vehicle via backpropagation artificial neural network
,”
Aircr. Eng. Aerosp. Technol.
89
,
145
154
(
2017
).
24.
V. K.
Unnikrishnan
,
K. S.
Choudhari
,
S. D.
Kulkarni
,
R.
Nayak
,
V. B.
Kartha
, and
C.
Santhosh
, “
Analytical predictive capabilities of laser induced breakdown spectroscopy (LIBS) with principal component analysis (PCA) for plastic classification
,”
RSC Adv.
3
,
25872
25880
(
2013
).
25.
R.
Junjuri
,
A. P.
Gummadi
, and
M. K.
Gundawar
, “
Single-shot compact spectrometer based standoff LIBS configuration for explosive detection using artificial neural networks
,”
Optik
204
,
163946
(
2020
).
26.
M. O.
Bachler
,
M.
Biscan
,
Z.
Kregar
,
I. J.
Badovinac
,
J.
Dobrinic
, and
S.
Milosevic
, “
Analysis of antique bronze coins by laser induced breakdown spectroscopy and multivariate analysis
,”
Spectrochim. Acta Part B
123
,
163
170
(
2016
).
27.
F.
Davo
,
S.
Alessandrini
,
S.
Sperati
,
L.
Delle Monache
,
D.
Airoldi
, and
M. T.
Vespucci
, “
Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting
,”
Solar Energy
134
,
327
338
(
2016
).
28.
H.
Chen
,
F. M.
Lu
, and
B. F.
He
, “
Topographic property of backpropagation artificial neural network: From human functional connectivity network to artificial neural network
,”
Neurocomputing
418
,
200
210
(
2020
).
29.
M.
Boueri
,
V.
Motto-Ros
,
W. Q.
Lei
,
Q. L.
Ma
,
L. J.
Zheng
,
H. P.
Zeng
, and
J.
Yu
, “
Identification of polymer materials using laser-induced breakdown spectroscopy combined with artificial neural networks
,”
Appl. Spectrosc.
65
,
307
314
(
2011
).
30.
B.
Campanella
,
E.
Grifoni
,
S.
Legnaioli
,
G.
Lorenzetti
,
S.
Pagnotta
,
F.
Sorrentino
, and
V.
Palleschi
, “
Classification of wrought aluminum alloys by artificial neural networks evaluation of laser induced breakdown spectroscopy spectra from aluminum scrap samples
,”
Spectrochim. Acta Part B
134
,
52
57
(
2017
).
31.
X.
Lu
,
Y. Z.
Liu
,
Y. B.
Zhou
,
Q. H.
Zhang
,
J. J.
Cao
, and
Y.
Chen
, “
Real-time in situ source tracing of human exhalation and different burning smoke indoors
,”
Spectrochim. Acta Part B
170
,
105901
(
2020
).
32.
National Institute of Standards and Technology, “NIST Chemistry WebBook, SRD69,” see http://webbook.nist.gov/chemistry/form-ser/.
33.
C. S.
Arruda
,
W. S.
Garcez
,
D.
Barrera-Arellano
, and
J. M.
Block
, “
Industrial trial to evaluate the effect of oxygen concentration on overall quality of refined, bleached, and deodorized soybean oil in PET bottles
,”
J. Am. Oil Chem. Soc.
83
,
797
802
(
2006
).
34.
G.
Pan
,
J. D.
Lu
,
M. R.
Dong
,
S. C.
Yao
,
Z. X.
Xie
, and
J.
Fan
, “
A study on the characteristics of carbon-related spectral lines from a laser-induced fly ash plasma
,”
Plasma Sci. Technol.
17
,
625
631
(
2015
).
35.
S. C.
Yao
,
J. D.
Lu
,
J. Y.
Li
,
K.
Chen
,
J.
Li
, and
M. R.
Dong
, “
Multi-elemental analysis of fertilizer using laser-induced breakdown spectroscopy coupled with partial least squares regression
,”
J. Anal. At. Spectrom.
25
,
1733
1738
(
2010
).
36.
M.
Novotny
,
J.
Bulir
,
J.
Lancok
,
M.
Jelinek
, and
Z.
Zelinger
, “
Study of the plasmas produced during the deposition of TiC/SiC thin films in a hybrid magnetron-laser system
,”
Czech J. Phys.
56
,
381
388
(
2006
).
37.
M. R.
Dong
,
X. L.
Mao
,
J. J.
Gonzalez
,
J. D.
Lu
, and
R. E.
Russo
, “
Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium
,”
J. Anal. At. Spectrom.
27
,
2066
2075
(
2012
).
You do not currently have access to this content.