The coaxial integration of optical coherence tomography (OCT) enables the determination of surface topography and measurement of object features along the optical path within laser machining. The measurement of surface information from the processed workpiece allows for the identification of features from the joint configuration and the subsequent control of the welding process by seam tracking. State-of-the-art seam tracking approaches are based on monochromatic cameras or laser triangulation. Typically, these approaches apply line segmentations for the identification of the joint position. The interferometric measurement method of OCT gives rise to the identification of new features for image processing in seam tracking. In this work, we identify specific noise components and features based on the theoretical background of OCT for image processing in seam tracking applications. Two different features are derived for the detection of arbitrary joint configurations with corresponding systematic image processing approaches. In the first step, we show the applicability of line detection methods for feature detection of arbitrary joint configurations. The necessary evaluation algorithm for case sensitivity and limitations (e.g., chamfer) in detecting different joint geometries are discussed. In the second step, we show an approach in feature extraction with feature detectors (e.g., ORB, SURF) for a new image feature. Here, significant image space from (multiple) reflections at the joint position is used for joint detection. The detectability is discussed depending on the joint configuration. The results show good suitability of both features for seam tracking applications.

1.
S.
Kaierle
,
Process Monitoring and Control of Laser Beam Welding: Measuring Quantifiable Data for Improved Processing Results
(
Wiley Online Library
, Hoboken, NJ,
2008
).
2.
N. D.
Dupriez
and
C.
Truckenbrodt
, “
OCT for efficient high quality laser welding: High-speed, high-resolution online seam tracking, monitoring and quality control
,”
Laser Tech. J.
13
,
37
41
(
2016
).
3.
M.
Kogel-Hollacher
and
T.
Nicolay
, “
Methoden der prozessüberwachung und qualitätssicherung beim laserstrahlfügen: Vorteile der kombination verschiedener sensortechniken
,” in
Stuttgart. Lasert.'05
(Wiley Online Library, Hoboken, NJ,
2005
), pp.
173
176
.
4.
A.
Rout
,
B.
Deepak
, and
B.
Biswal
, “
Advances in weld seam tracking techniques for robotic welding: A review
,”
Robot. Comput. Integr. Manuf.
56
,
12
37
(
2019
).
5.
Q.-Q.
Wu
,
J.-P.
Lee
,
M.-H.
Park
,
C.-K.
Park
, and
I.-S.
Kim
, “
A study on development of optimal noise filter algorithm for laser vision system in GMA welding
,”
Procedia Eng.
97
,
819
827
(
2014
).
6.
W.
Gu
,
Z.
Xiong
, and
W.
Wan
, “
Autonomous seam acquisition and tracking system for multi-pass welding based on vision sensor
,”
Int. J. Adv. Manuf. Technol.
69
,
451
460
(
2013
).
7.
Q.-Q.
Wu
 et al., “
A study on the modified hough algorithm for image processing in weld seam tracking
,”
J. Mech. Sci. Technol.
29
,
4859
4865
(
2015
).
8.
Y.
He
,
Y.
Xu
,
Y.
Chen
,
H.
Chen
, and
S.
Chen
, “
Weld seam profile detection and feature point extraction for multi-pass route planning based on visual attention model
,”
Robot. Comput. Integr. Manuf.
37
,
251
261
(
2016
).
9.
P.
Kiddee
,
Z.
Fang
, and
M.
Tan
, “
An automated weld seam tracking system for thick plate using cross mark structured light
,”
Int. J. Adv. Manuf. Technol.
87
,
3589
3603
(
2016
).
10.
Y.
Ma
 et al., “
Efficient and accurate start point guiding and seam tracking method for curve weld based on structure light
,”
IEEE Trans. Instrum. Meas.
70
,
1
10
(
2021
).
11.
J. S.
Kim
,
Y. T.
Son
,
H. S.
Cho
, and
K. I.
Koh
., “
A robust method for vision-based seam tracking in robotic arc welding
,” in
Proceedings of Tenth International Symposium on Intelligent Control
, Monterey, CA, 27–29 August 1995 (
IEEE
, New York City, NY,
1995
), pp.
363
368
.
12.
X.
Li
,
X.
Li
,
S. S.
Ge
,
M. O.
Khyam
, and
C.
Luo
, “
Automatic welding seam tracking and identification
,”
IEEE Trans. Ind. Electron.
64
,
7261
7271
(
2017
).
13.
N. D.
Dupriez
and
A.
Denkl
, “
Advances of OCT technology for laser beam processing: Precision and quality during laser welding
,”
Laser Techn. J.
14
,
34
38
(
2017
).
14.
K.
Mukasa
,
M.
Ikeda
,
K.
Sueoka
,
E.
Ueda
,
H.
Kadono
, and
M.
Mutoh
, “
Laser welding head-controlling system, a laser welding head and a method for controlling a laser welding head
,”
Google Patents
US6849821B2 (February 1,
2005
).
15.
X.
Li
,
X.
Li
,
M. O.
Khyam
, and
S. S.
Ge
, “
Robust welding seam tracking and recognition
,”
IEEE Sens. J.
17
,
5609
5617
(
2017
).
16.
R.
Du
,
Y.
Xu
,
Z.
Hou
,
J.
Shu
, and
S.
Chen
, “
Strong noise image processing for vision-based seam tracking in robotic gas metal arc welding
,”
Int. J. Adv. Manuf. Technol.
101
,
2135
2149
(
2019
).
17.
B. E.
Saleh
and
M. C.
Teich
,
Fundamentals of Photonics
(
John Wiley & Sons
, Hoboken, NJ,
2019
).
18.
J. M.
Schmitt
, “
Optical coherence tomography (OCT): A review
,”
IEEE J. Sel. Top. Quantum Electron.
5
,
1205
1215
(
1999
).
19.
W.
Drexler
and
J. G.
Fujimoto
,
Optical Coherence Tomography: Technology and Applications
(
Springer Science & Business Media
, Berlin/Heidelberg, Germany,
2008
).
20.
X.
Attendu
,
R. M.
Ruis
,
C.
Boudoux
,
T. G.
van Leeuwen
, and
D. J.
Faber
, “
Simple and robust calibration procedure for k-linearization and dispersion compensation in optical coherence tomography
,”
J. Biomed. Opt.
24
,
056001
(
2019
).
21.
R.
Verma
and
J.
Ali
, “
A comparative study of various types of image noise and efficient noise removal techniques
,”
Int. J. Adv. Res. Comput. Sci. Software Eng.
3
,
617
–622 (
2013
).
22.
J. D.
Gibson
and
A.
Bovik
,
Handbook of Image and Video Processing
(
Academic
, San Diego, CA,
2000
).
23.
D.
Chang
 et al., “
A new seam-tracking algorithm through characteristic-point detection for a portable welding robot
,”
Robot. Comput. Integr. Manuf.
28
,
1
13
(
2012
).
24.
W.
Huang
and
R.
Kovacevic
, “
Development of a real-time laser-based machine vision system to monitor and control welding processes
,”
Int. J. Adv. Manuf. Technol.
63
,
235
248
(
2012
).
25.
J.-P.
Lee
,
Q.-Q.
Wu
,
M.-H.
Park
,
C.-K.
Park
, and
I.-S.
Kim
, “
A study on optimal algorithms to find joint tracking in GMA welding
,”
Int. J. Eng. Sci. Innov. Technol.
3
,
370
380
(
2014
).
26.
J.
Gao
,
Y.
Hong
,
B.
Hong
,
X.
Li
,
A.
Jia
, and
Y.
Qu
, “
A method of feature extraction of position detection and weld gap for GMAW seam tracking system of fillet weld with variable gaps
,”
IEEE Sens. J.
21
,
23537
23550
(
2021
).
27.
N.
Otsu
, “
A threshold selection method from gray-level histograms
,”
IEEE Trans. Syst. Man Cybern.
9
,
62
66
(
1979
).
28.
P. K.
Sahoo
,
S.
Soltani
, and
A. K.
Wong
, “
A survey of thresholding techniques
,”
Comput. Vis. Graph. Image Process.
41
,
233
260
(
1988
).
29.
B.-J.
Jin
 et al., “
A study on development of the optimization algorithms to find the seam tracking
,”
J. Weld. Join.
34
,
59
66
(
2016
).
30.
P.
Ahmed
, “
A neural network based dedicated thinning method
,”
Pattern Recognit. Lett.
16
,
585
590
(
1995
).
31.
L.
Lam
,
S.-W.
Lee
, and
C. Y.
Suen
, “
Thinning methodologies-a comprehensive survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
14
,
869
885
(
1992
).
32.
T.
Zhang
and
C. Y.
Suen
, “
A fast parallel algorithm for thinning digital patterns
,”
Commun. ACM
27
,
236
239
(
1984
).
33.
J.
Illingworth
and
J.
Kittler
, “
A survey of the hough transform
,”
Comput. Vis. Graph. Image Process.
44
,
87
116
(
1988
).
34.
S.
Helgason
and
S.
Helgason
,
The Radon Transform
(
Springer
, New York City, NY,
1980
).
35.
R. G.
Von Gioi
,
J.
Jakubowicz
,
J.-M.
Morel
, and
G.
Randall
, “
LSD: A line segment detector
,”
Image Process. On Line
2
,
35
55
(
2012
).
36.
R.
Xiao
,
Y.
Xu
,
Z.
Hou
,
C.
Chen
, and
S.
Chen
, “
An adaptive feature extraction algorithm for multiple typical seam tracking based on vision sensor in robotic arc welding
,”
Sens. Actuators A
297
,
111533
(
2019
).
37.
M.
van Ginkel
,
C. L.
Hendriks
, and
L. J.
van Vliet
,
A Short Introduction to the Radon and Hough Transforms and How They Relate to Each Other
(
Delft University of Technology
, Delft, Netherlands,
2004
).
38.
P.
Rahmdel
,
R. A.
Comley
,
D.
Shi
, and
S.
McElduff
, “A review of hough transform and line segment detection approaches” in
Proceedings of the 10th International Conference on Computer Vision Theory and Applications (VISAPP-2015), VISAPP 2015 - International Conference on Computer Vision Theory and Applications, Berlin, Germany, 11–14 March 2015
(Scitepress Digital Library, 2005). (2015).
39.
G.
Shrivakshan
and
C.
Chandrasekar
, “
A comparison of various edge detection techniques used in image processing
,”
Int. J. Comput. Sci. Issues
9
,
269
–276 (
2012
).
40.
S. E.
Umbaugh
,
Digital Image Processing and Analysis Human and Computer Vision Applications with CVIPtools
(
CRC
, Boca Raton, FL,
2010
).
41.
H.
Bay
,
T.
Tuytelaars
, and
L.
Van Gool
, “
Surf: Speeded up robust features
,” in
European Conference on Computer Vision,
9th European Conference on Computer Vision, Graz, Austria, May 7–13, 2006 (
Springer
, Berlin, Heidelberg,
2006
), Vol. 3951, pp.
404
417
.
42.
E.
Rublee
,
V.
Rabaud
,
K.
Konolige
, and
G.
Bradski
, “
ORB: An efficient alternative to SIFT or SURF
,” in
International Conference on Computer Vision, 2011
, Barcelona, Spain, 06–13 November 2011 (
IEEE
,
2011
), pp.
2564
2571
.
43.
P. F.
Alcantarilla
and
T.
Solutions
, “
Fast explicit diffusion for accelerated features in nonlinear scale spaces
,”
IEEE Trans. Patt. Anal. Mach. Intell
34
,
1281
1298
(
2011
).
44.
T.
Tuytelaars
and
K.
Mikolajczyk
,
Local Invariant Feature Detectors a Survey
(
Now
, Leuven, Belgium,
2008
).
45.
H.-J.
Chien
,
C.-C.
Chuang
,
C.-Y.
Chen
, and
R.
Klette
, “
When to use what feature? SIFT, SURF, ORB, or A-KAZE features for monocular visual odometry
,” in
International Conference on Image and Vision Computing New Zealand (IVCNZ)
, 21–22 November 2016, Palmerston North, New Zealand, (
IEEE
, New York City, NY,
2016
), pp.
1
6
.
46.
ISO 17659:2005-09, “Schweißen—Mehrsprachige Benennungen für Schweißverbindungen mit bildlichen Darstellungen” (2005).
47.
Z.
Jia
,
T.
Wang
,
J.
He
,
L.
Li
, and
K.
Wu
, “
Real-time spatial intersecting seam tracking based on laser vision stereo sensor
,”
Measurement
149
,
106987
(
2020
).
48.
C.
Cai
,
B.
Wang
,
Y.
Liu
, and
Y.
Yan
, “
Unfeatured weld positioning technology based on neural network and machine vision
,” in
2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC)
, 27–29 June 2018, Chongqing, China, (
IEEE
, New York City, NY,
2018
), pp.
477
481
.
49.
J.
Fan
,
F.
Jing
,
L.
Yang
,
T.
Long
, and
M.
Tan
, “
A precise seam tracking method for narrow butt seams based on structured light vision sensor
,”
Opt. Laser Technol.
109
,
616
626
(
2019
).
50.
J.
Fan
 et al., “
An initial point alignment and seam-tracking system for narrow weld
,”
IEEE Trans. Ind. Inform.
16
,
877
886
(
2020
).
51.
R.
Miao
 et al., “
Online inspection of narrow overlap weld quality using two-stage convolution neural network image recognition
,”
Mach. Vis. Appl.
32
,
1
14
(
2021
).
52.
L.
Yang
,
J.
Fan
,
B.
Huo
,
E.
Li
, and
Y.
Liu
, “
Image denoising of seam images with deep learning for laser vision seam tracking
,”
IEEE Sens. J.
22
,
6098
6107
(
2022
).
53.
P.
Adarsh
,
P.
Rathi
, and
M.
Kumar
, “
YOLO v3-Tiny: Object detection and recognition using one stage improved model
,” in
2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)
, 06–07 March 2020, Coimbatore, India, New York City, NY, (
IEEE
, New York City, NY,
2020
), pp.
687
694
.
You do not currently have access to this content.