The purpose of this study is to examine the microstructure and corrosion performance of martensitic stainless steel 17-4 PH produced by laser powder bed fusion (LPBF) and its corresponding rod specimen in sulfuric acid. Based on a microstructural analysis, the LPBF alloy contained melt pools with an ultrafine cellular structure and uniform distribution of elements, including Nb. The LPBF process significantly improved the corrosion resistance of the 17-4 PH stainless steel alloy in sulfuric acid. The alloy manufactured by LPBF had a charge transfer resistance of at least 7 times that of the Rod counterpart and a corrosion current density that was 4 times lower than Rod. The homogeneous distribution of elements during the solidification process improved the electrochemical performance of LPBF 17-4 PH stainless steel due to the development of gentle galvanic cells compared to Rod one.

1.
G.
Tapia
and
Al.
Elwany
, “
A review on process monitoring and control in metal-based additive manufacturing
,”
J. Manuf. Sci. Eng.
136
,
060801
(
2014
).
2.
B.
Almangour
and
J.
Yang
, “
Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing
,”
Mater. Des.
110
,
914
924
(
2016
).
3.
W.-n.
Zhang
,
L.-z.
Wang
,
Z.-x.
Feng
, and
Y.-m.
Chen
, “
Research progress on selective laser melting (SLM) of magnesium alloys: A review
,”
Optik (Stuttg)
207
,
163842
(
2020
).
4.
S.
Cheruvathur
,
E. A.
Lass
, and
C. E.
Campbell
, “
Additive manufacturing of 17-4 PH stainless steel: Post-processing heat treatment to achieve uniform reproducible microstructure
,”
JOM
68
,
930
942
(
2016
).
5.
N.
Haghdadi
,
M.
Laleh
,
M.
Moyle
, and
S.
Primig
, “
Additive manufacturing of steels: A review of achievements and challenges
,”
J. Mater. Sci.
56
,
64
107
(
2021
).
6.
R.
Karunakaran
,
S.
Ortgies
,
A.
Tamayol
,
F.
Bobaru
, and
M. P.
Sealy
, “
Bioactive materials additive manufacturing of magnesium alloys
,”
Bioact. Mater.
5
,
44
54
(
2020
).
7.
A. J.
Pinkerton
, “
Lasers in additive manufacturing
,”
Opt. Laser Technol.
78
,
25
32
(
2016
).
8.
M.
Yakout
,
M. A.
Elbestawi
, and
S. C.
Veldhuis
, “
A review of metal additive manufacturing technologies
,”
Solid State Phenom.
278
,
1
14
(
2018
).
9.
Z.
Fang
,
Z.
Wu
,
C.
Huang
, and
C.
Wu
, “
Review on residual stress in selective laser melting additive manufacturing of alloy parts
,”
Opt. Laser Technol.
129
,
106283
(
2020
).
10.
M.
Kahvazi Zadeh
,
M.
Yeganeh
,
M. Tavakoli
Shoushtari
,
H.
Ramezanalizadeh
, and
F.
Seidi
, “
Microstructure, corrosion behavior, and biocompatibility of Ti-6Al-4 V alloy fabricated by LPBF and EBM techniques
,”
Mater. Today Commun.
31
,
103502
(
2022
).
11.
Z.
Hu
,
H.
Zhu
,
H.
Zhang
, and
X.
Zeng
, “
Experimental investigation on selective laser melting of 17-4PH stainless steel
,”
Opt. Laser Technol.
87
,
17
25
(
2017
).
12.
I.
Yadroitsev
,
P.
Krakhmalev
,
I.
Yadroitsava
,
S.
Johansson
, and
I.
Smurov
, “
Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder
,”
J. Mater. Process. Technol.
213
,
606
613
(
2013
).
13.
L.
Zai
,
C.
Zhang
,
Y.
Wang
,
U.
Kingdom
,
A.
Energy
,
W.
Guo
, and
X.
Tong
, “
Laser powder bed fusion of precipitation-hardened martensitic stainless steels: A review
,”
Metals (Basel)
10
,
1
25
(
2020
).
14.
C. N.
Hsiao
,
C. S.
Chiou
, and
J. R.
Yang
, “
Aging reactions in a 17-4 PH stainless steel
,”
Mater. Chem. Phys.
74
,
134
142
(
2002
).
15.
L. E.
Murr
,
E.
Martinez
,
J.
Hernandez
,
S.
Collins
,
K. N.
Amato
,
S. M.
Gaytan
, and
P. W.
Shindo
, “
Microstructures and properties of 17-4 PH stainless steel fabricated by selective laser melting
,”
J. Mater. Res. Technol.
1
,
167
177
(
2012
).
16.
A.
Barroux
,
N.
Ducommun
,
E.
Nivet
,
L.
Laffont
, and
C.
Blanc
, “
Pitting corrosion of 17-4PH stainless steel manufactured by laser beam melting
,”
Corros. Sci.
169
,
108594
(
2020
).
17.
M.
Alnajjar
,
Frédéric
Christien
,
Cédric
Bosch
, and
K.
Wolski
, “
A comparative study of microstructure and hydrogen embrittlement of selective laser melted and wrought 17-4 PH stainless steel
,”
Mater. Sci. Eng. A.
785
,
139363
(
2020
).
18.
M.
Alnajjar
,
F.
Christien
,
V.
Barnier
,
C.
Bosch
,
K.
Wolski
,
A. D.
Fortes
, and
M.
Telling
, “
Influence of microstructure and manganese sulfides on corrosion resistance of selective laser melted 17-4 PH stainless steel in acidic chloride medium
,”
Corros. Sci.
168
,
108585
(
2020
).
19.
S. L. H. R.
Lashgari
,
Y.
Xue
,
C.
Onggowarsito
, and
C.
Kong
, “
Microstructure, tribological properties and corrosion behaviour of additively manufactured 17-4PH stainless steel: Effects of scanning pattern, build orientation, and single vs.: double scan
,”
Mater. Today Commun.
25
,
101535
(
2020
).
20.
S. D.
Meredith
,
J. S.
Zuback
,
J. S.
Keist
, and,
T. A.
Palmer
, “
Impact of composition on the heat treatment response of additively manufactured 17-4 PH grade stainless steel
,”
Mater. Sci. Eng. A
738
,
44
56
(
2018
).
21.
R.
Molaei
,
A.
Fatemi
, and
N.
Phan
, “
Multiaxial fatigue of LB-PBF additive manufactured 17-4 PH stainless steel including the effects of surface roughness and HIP treatment and comparisons with the wrought alloy
,”
Int. J. Fatigue
137
,
105646
(
2020
).
22.
H.
Irrinki
,
T.
Harper
,
S.
Badwe
,
J.
Stitzel
,
O.
Gulsoy
,
G.
Gupta
, and
S. V.
Atre
, “
Effects of powder characteristics and processing conditions on the corrosion performance of 17-4 PH stainless steel fabricated by laser-powder bed fusion
,”
Prog. Addit. Manuf.
3
,
39
49
(
2018
).
23.
M.
Yeganeh
,
M. T.
Shoushtari
, and
P.
Jalali
, “
Evaluation of the corrosion performance of selective laser melted 17-4 precipitation hardening stainless steel in ringer's solution evaluation of the corrosion performance of selective laser melted 17-4 precipitation hardening stainless steel in ringer
,”
J. Laser Appl.
33
,
042001
(
2021
).
24.
R. F.
Schaller
,
J. M.
Taylor
, and
E. J.
Schindelholz
, “
Corrosion properties of powder bed fusion additively manufactured 17-4 PH stainless steel
,”
Corrosion
73
,
796
807
(
2017
).
25.
A.
Barroux
,
T.
Duguet
,
N.
Ducommun
,
E.
Nivet
,
J.
Delgado
,
L.
Laffont
, and
C.
Blanc
, “
Combined XPS/TEM study of the chemical composition and structure of the passive film formed on additive manufactured 17-4PH stainless steel
,”
Surf. Interfaces
22
,
100874
(
2021
).
26.
M.
Saremi
and
M.
Yeganeh
, “
Investigation of corrosion behaviour of nanostructured copper thin film produced by radio frequency sputtering
,”
Micro Nano Lett.
5
,
70
75
(
2010
).
27.
Z.
Shahryari
,
K.
Gheisari
,
M.
Yeganeh
, and
B.
Ramezanzadeh
, “
Corrosion mitigation ability of differently synthesized polypyrrole (PPy-FeCl3 & PPy-APS) conductive polymers modified with Na2MoO4 on mild steel in 3.5% NaCl solution: Comparative study and optimization
,”
Corros. Sci.
193
,
109894
(
2021
).
28.
M.
Saremi
and
M.
Yeganeh
, “
Corrosion behavior of copper thin films deposited by EB-PVD technique on thermally grown silicon dioxide and glass in hydrochloric acid media
,”
Mater. Chem. Phys.
123
,
456
462
(
2010
).
29.
M.
Yeganeh
and
M.
Saremi
, “
A comparison between the corrosion behavior of nanostructured copper thin films deposited on oxidized silicon and copper sheet in alkaline media
,”
Surf. Coat. Technol.
205
,
2218
2224
(
2010
).
30.
E. A.
Lass
,
F. A. N.
Zhang
, and
C. E.
Campbell
, “
Nitrogen effects in additively manufactured martensitic stainless steels: conventional thermal processing and comparison with wrought
,”
Metall. Mater. Trans. A
51
,
2318
2332
(
2020
).
31.
M. R.
Stoudt
,
R. E.
Ricker
,
E. A.
Lass
, and
L. E.
Levine
, “
Influence of postbuild microstructure on the electrochemical behavior of additively manufactured 17-4 PH stainless steel
,”
JOM
69
,
506
515
(
2017
).
32.
T.
Hsu
,
Y.
Chang
,
C.
Huang
,
H.
Yen
,
C.
Chen
,
K.
Jen
, and
A.
Yeh
, “
Microstructure and property of a selective laser melting process induced oxide dispersion strengthened 17-4 PH stainless steel
,”
J. Alloys Compd.
803
,
30
41
(
2019
).
33.
H. K.
Rafi
,
D.
Pal
,
N.
Patil
,
T. L.
Starr
, and
B. E.
Stucker
, “
Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting
,”
J. Mater. Eng. Perform.
23
,
4421
4428
(
2014
).
34.
M. H.
Shaeri Karimi
,
M.
Yeganeh
,
S. R.
Alavi Zaree
, and
M.
Eskandari
, “
Corrosion behavior of 316L stainless steel manufactured by laser powder bed fusion (L-PBF) in an alkaline solution
,”
Opt. Laser Technol.
138
,
106918
(
2021
).
35.
H. K.
Rafi
,
D.
Pal
,
N.
Patil
,
T. L.
Starr
, and
B. E.
Stucker
, “
Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting
,”
J. Mater. Eng. Perform.
23
,
4421
4428
(
2014
).
36.
A.
Keyvani
,
M.
Yeganeh
, and
H.
Rezaeyan
, “
Electrodeposition of Zn-Co-Mo alloy on the steel substrate from citrate bath and its corrosion behavior in the chloride media
,”
J. Mater. Eng. Perform.
26
,
1958
1966
(
2017
).
37.
Z.
Shahryari
,
K.
Gheisari
,
M.
Yeganeh
, and
B.
Ramezanzadeh
, “
MoO42-doped oxidative polymerized pyrrole-graphene oxide core-shell structure synthesis and application for dual-barrier & active functional epoxy-coating construction
,”
Prog. Org. Coat.
167
,
106845
(
2022
).
38.
M.
Yeganeh
and
M.
Saremi
, “
Corrosion inhibition of magnesium using biocompatible alkyd coatings incorporated by mesoporous silica nanocontainers
,”
Prog. Org. Coat.
79
,
25
30
(
2015
).
39.
M.
Hatami
,
M.
Yeganeh
,
A.
Keyvani
,
M.
Saremi
, and
R.
Naderi
, “
Electrochemical behavior of polypyrrole-coated AZ31 alloy modified by fluoride anions
,”
J. Solid State Electrochem.
21
,
777
785
(
2017
).
40.
B.
Hirschorn
,
M. E.
Orazem
,
B.
Tribollet
,
V.
Vivier
,
I.
Frateur
, and
M.
Musiani
, “
Determination of effective capacitance and film thickness from constant-phase-element parameters
,”
Electrochim. Acta
55
,
6218
6227
(
2010
).
41.
M.
Saremi
and
M.
Yeganeh
, “
Application of mesoporous silica nanocontainers as smart host of corrosion inhibitor in polypyrrole coatings
,”
Corros. Sci.
86
,
159
170
(
2014
).
42.
M.
Yeganeh
and
A.
Keyvani
, “
The effect of mesoporous silica nanocontainers incorporation on the corrosion behavior of scratched polymer coatings
,”
Prog. Org. Coatings
90
,
296
303
(
2016
).
43.
M.
Yeganeh
,
M.
Omidi
, and
M.
Eskandari
, “
Superhydrophobic surface of AZ31 alloy fabricated by chemical treatment in the NiSO4 solution
,”
J. Mater. Eng. Perform.
27
,
3951
3960
(
2018
).
44.
A.
Keyvani
,
M.
Yeganeh
, and
H.
Rezaeyan
, “
Application of mesoporous silica nanocontainers as an intelligent host of molybdate corrosion inhibitor embedded in the epoxy coated steel
,”
Prog. Nat. Sci. Mater. Int.
27
,
261
267
(
2017
).
45.
M.
Yeganeh
,
M. H.
Rezvani
, and
S. M.
Laribaghal
, “
Electrochemical behavior of additively manufactured 316 L stainless steel in H2SO4 solution containing methionine as an amino acid
,”
Colloids Surf., A
627
,
127120
(
2021
).
46.
G. V.
Bueno
,
M. E.
Taqueda
,
H. G.
De Melo
, and
I. C.
Guedes
, “
Using a DOE and EIS to evaluate the synergistic effects of low toxicity inhibitors for mild steel
,”
Braz. J. Chem. Eng.
32
,
167
177
(
2015
).
47.
M.
Mahdavian
and
S.
Ashhari
, “
Corrosion inhibition performance of 2-mercaptobenzimidazole and 2-mercaptobenzoxazole compounds for protection of mild steel in hydrochloric acid solution
,”
Electrochim. Acta
55
,
1720
1724
(
2010
).
48.
M.
Yeganeh
,
M.
Eskandari
, and
S. R.
Alavi-Zaree
, “
A comparison between corrosion behaviors of fine-grained and coarse-grained structures of high-Mn steel in NaCl solution
,”
J. Mater. Eng. Perform.
26
,
2484
2490
(
2017
).
49.
J.
Williamson
and
O. B.
Isgor
, “
The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar
,”
Corros. Sci.
106
,
82
95
(
2016
).
50.
T. L. S. L.
Wijesinghe
and
D. J.
Blackwood
, “
Characterisation of passive films on 300 series stainless steels
,”
Appl. Surf. Sci.
253
,
1006
1009
(
2006
).
51.
D. D.
MacDonald
, “
Theoretical investigation of the evolution of the passive state on alloy 22 in acidified, saturated brine under open circuit conditions
,”
Electrochim. Acta
56
,
7411
7420
(
2011
).
52.
X.
Gai
,
Y.
Bai
,
S.
Li
,
W.
Hou
,
Y.
Hao
,
X.
Zhang
, and
R.
Yang
, “
In-situ monitoring of the electrochemical behavior of cellular structure d biome dical Ti-6Al-4V alloy fabricate d by electron beam melting in simulated physiological fluid
,”
Acta Biomater.
106
,
387
395
(
2020
).
53.
L.
Jinlong
and
L.
Hongyun
, “
Comparison of corrosion properties of passive films formed on phase reversion induced nano/ultrafine-grained 321 stainless steel
,”
Appl. Surf. Sci.
280
,
124
131
(
2013
).
54.
G.
Blanco
,
A.
Bautista
, and
H.
Takenouti
, “
EIS study of passivation of austenitic and duplex stainless steels reinforcements in simulated pore solutions
,”
Cem. Concr. Compos.
28
,
212
219
(
2006
).
55.
E.
McCafferty
,
Introduction to Corrosion Science
, 1st ed. (
Springer
,
New York
,
2010
).
56.
Z.
Snow
,
A. R.
Nassar
, and
E. W.
Reutzel
, “
Invited review article: Review of the formation and impact of flaws in powder bed fusion additive manufacturing
,”
Addit. Manuf.
36
,
101457
(
2020
).
57.
R. N.
Clark
,
J.
Searle
,
T. L.
Martin
,
W. S.
Walters
, and
G.
Williams
, “
The role of niobium carbides in the localised corrosion initiation of 20Cr- 25Ni-Nb advanced gas-cooled reactor fuel cladding
,”
Corros. Sci.
165
,
108365
(
2019
).
You do not currently have access to this content.