In order to investigate the corrosion mechanism in molten aluminum alloy, NiCrBSi coating was prepared on H13 tool steel by laser-cladding. The coating mainly contained γ-(Ni, Fe), Cr7C3, Ni3B, and CrB. Floret-shaped CrB and dendritic Cr7C3 were uniformly distributed in the Ni-based solid solution matrix, with Ni-Ni3B network eutectics separated around them. The corrosion test results in molten aluminum alloy at 1073 K revealed that NiCrBSi coating exhibited excellent corrosion resistance, which was attributed to its boride-containing phase composition and microstructure. Borides can help prevent the coating surface from being wetted by liquid aluminum at the early stage of corrosion. With the prolongation of the corrosion time, molten aluminum alloy began to wet the coating surface and react with it to form a transition layer. However, the dense network structure formed by CrB hard phases and boron-rich eutectics can effectively prevent liquid aluminum from intruding into the interior part of the coating. Meanwhile, the raised borides at the interface can also slow down the reaction between aluminum and the surrounding Ni-based matrix. Thus, the corrosion rate was relatively slow and a transition layer with the thickness of 140 μm was formed after 150 h of corrosion, while the inferior coating and H13 substrate still remained intact.

1.
G.
Xu
,
K.
Wang
,
X.
Dong
,
L.
Yang
,
M.
Ebrahimi
,
H.
Jiang
,
Q.
Wang
, and
W.
Ding
, “
Review on corrosion resistance of mild steels in liquid aluminum
,”
J. Mater. Sci. Technol.
71
,
12
22
(
2021
).
2.
X.
Zhang
,
W.
Chen
,
H.
Luo
,
S.
Li
,
T.
Zhou
, and
L.
Shi
, “
Corrosion resistance and interfacial morphologies of novel Fe-Cr-Mo-B cast steels in molten aluminum
,”
Corros. Sci.
125
,
20
28
(
2017
).
3.
A.
Robin
and
H. R. Z.
Sandim
, “
Degradation behavior of niobium in molten aluminum
,”
Int. J. Refract. Met. Hard Mater.
20
,
221
225
(
2002
).
4.
N.
Tunca
,
G. W.
Delamore
, and
R. W.
Smith
, “
Corrosion of Mo, Nb, Cr, and Y in molten aluminum
,”
Metall. Trans. A
21
,
2919
2928
(
1990
).
5.
Z.
Yu
,
M.
Chen
,
K.
Chen
,
D.
Xie
,
S.
Zhu
, and
F.
Wang
, “
Corrosion of enamel with and without CaF2 in molten aluminum at 750 °C
,”
Corros. Sci.
148
,
228
236
(
2019
).
6.
M.
Zhou
,
K.
Li
,
D.
Shu
,
B. D.
Sun
, and
J.
Wang
, “
Corrosion resistance properties of enamels with high B2O3–P2O5 content to molten aluminum
,”
Mater. Sci. Eng. A
346
,
116
121
(
2003
).
7.
C. S.
Lin
,
C. S.
Ke
, and
H.
Peng
, “
Corrosion of CrN and CrN/TiN coated heat-resistant steels in molten A356 aluminum alloy
,”
Surf. Coat. Technol.
146–147
,
168
174
(
2001
).
8.
N.
Rybakova
,
M.
Souto
,
H. P.
Martinz
,
Y.
Andriyko
,
W.
Artner
,
J.
Godinho
, and
G. E.
Nauer
, “
Stability of electroplated titanium diboride coatings in high-temperature corrosive media
,”
Corros. Sci.
51
,
1315
1321
(
2009
).
9.
D. C.
Lou
,
O. M.
Akselsen
,
M. I.
OnsøIen
,
J. K.
Solberg
, and
J.
Berget
, “
Surface modification of steel and cast iron to improve corrosion resistance in molten aluminium
,”
Surf. Coat. Technol.
200
,
5282
5288
(
2006
).
10.
Q.
Wang
,
F. Q.
Chen
,
L.
Zhang
,
J. D.
Li
, and
J. W.
Zhang
, “
Microstructure evolution and high temperature corrosion behavior of FeCrBSi coatings prepared by laser cladding
,”
Ceram. Int.
46
,
17233
17242
(
2020
).
11.
D.
Shu
,
Z.
Li
,
C.
Yao
,
D.
Li
, and
Z.
Dai
, “
In situ synthesised WC reinforced nickel coating by laser cladding
,”
Surf. Eng.
34
,
276
282
(
2018
).
12.
S. W.
Rukhande
and
W. S.
Rathod
, “
An isothermal oxidation behaviour of atmospheric plasma and high-velocity oxy-fuel sprayed nickel based coating
,”
Ceram. Int.
46
,
18498
18506
(
2020
).
13.
M. A.
Garrido
,
A.
Rico
,
M.
Gómez
,
M.
Cadenas
,
J.
Fernández-Rico
, and
J.
Rodríguez
, “
Tribological and oxidative behavior of thermally sprayed NiCrBSi coatings
,”
J. Therm. Spray Technol.
26
,
517
529
(
2017
).
14.
T. S.
Sidhu
,
S.
Prakash
, and
R. D.
Agrawal
, “
Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni- and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900°C
,”
Acta Mater.
54
,
773
784
(
2006
).
15.
N.
Serres
,
F.
Hlawka
,
S.
Costil
,
C.
Langlade
, and
F.
Machi
, “
Corrosion properties of in situ laser remelted NiCrBSi coatings comparison with hard chromium coatings
,”
J. Mater. Process. Technol.
211
,
133
140
(
2011
).
16.
C.
Fu
,
Y.
Li
, and
Y. F.
Wang
, “
Microstructure and corrosion resistance of ERNiCrMo-13 and NiCrBSi coatings in simulated coal-fired boiler conditions: The effect of fly-ash composition
,”
Surf. Coat. Technol.
399
,
126134
(
2020
).
17.
M. P.
Planche
,
H.
Liao
,
B.
Normand
, and
C.
Coddet
, “
Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes
,”
Surf. Coat. Technol.
200
,
2465
2473
(
2005
).
18.
I.
Hemmati
,
V.
Ocelík
,
K.
Csach
, and
J. T. M.
De Hosson
, “
Microstructure and phase formation in a rapidly solidified laser-deposited Ni-Cr-B-Si-C hardfacing alloy
,”
Metall. Mater. Trans. A
45
,
878
892
(
2014
).
19.
R.
Ma
,
Y.
Gui
,
W.
Ma
,
T.
Qin
,
Z.
Deng
,
Q.
Chu
, and
Q.
Ma
, “
Wear resistance of laser cladding Fe50Cr40Si10 coating on AISI 1045 steel in elevated temperature
,”
J. Laser Appl.
33
,
042038
(
2021
).
20.
M.
Alizadeh-Sh
,
S. P. H.
Marashi
,
E.
Ranjbarnodeh
,
R.
Shoja-Razavi
, and
J. P.
Oliveira
, “
Dissimilar laser cladding of Inconel 718 powder on A-286 substrate: Microstructural evolution
,”
J. Laser Appl.
32
,
022048
(
2020
).
21.
X.
Feng
,
H.
Wang
,
X.
Liu
,
C.
Wang
,
H.
Cui
,
Q.
Song
,
K.
Huang
,
N.
Li
, and
X.
Jiang
, “
Effect of Al content on wear and corrosion resistance of Ni-based alloy coatings by laser cladding
,”
Surf. Coat. Technol.
412
,
126976
(
2021
).
22.
J.
Liu
,
H.
Liu
,
X.
Tian
,
H.
Yang
, and
J.
Hao
, “
Microstructural evolution and corrosion properties of Ni-based alloy coatings fabricated by multi-layer laser cladding on cast iron
,”
J. Alloys Compd.
822
,
153708
(
2020
).
23.
X.
Shi
,
D.
Wen
,
S.
Wang
,
G.
Wang
,
M.
Zhang
,
J.
Li
, and
C.
Xue
, “
Investigation on friction and wear performance of laser cladding Ni-based alloy coating on brake disc
,”
Optik
242
,
167227
(
2021
).
24.
T.
Gómez-del Río
,
M. A.
Garrido
,
J. E.
Fernández
,
M.
Cadenas
, and
J.
Rodríguez
, “
Influence of the deposition techniques on the mechanical properties and microstructure of NiCrBSi coatings
,”
J. Mater. Process. Technol.
204
,
304
312
(
2008
).
25.
E. I.
Rau
and
L.
Reimer
, “
Fundamental problems of imaging subsurface structures in the backscattered electron mode in scanning electron microscopy
,”
Scanning
23
,
235
240
(
2001
).
26.
I.
Hemmati
,
J. C.
Rao
,
V.
Ocelík
, and
J. Th. M.
De Hosson
, “
Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings
,”
Microsc. Microanal.
19
,
120
131
(
2013
).
27.
A.
Salman
,
B. L.
Gabbitas
,
P.
Cao
, and
D. L.
Zhang
, “
The performance of thermally sprayed titanium based composite coatings in molten aluminium
,”
Surf. Coat. Technol.
205
,
5000
5008
(
2011
).
28.
A. J.
López
and
J.
Rams
, “
Protection of carbon steel against molten aluminum attack and high temperature corrosion using high velocity oxygen-fuel WC–Co coatings
,”
Surf. Coat. Technol.
262
,
123
133
(
2015
).
29.
Q.
Wang
,
W.
Wang
,
H.
Liu
, and
C.
Zeng
, “
Corrosion behavior of zirconium diboride coated stainless steel in molten 6061 aluminum alloy
,”
Surf. Coat. Technol.
313
,
129
135
(
2017
).
30.
G. V.
Samsonov
,
A. D.
Panasyuk
, and
M. S.
Borovikova
, “
Contact reaction between refractory compounds and liquid metals
,”
Soviet Powder Metall. Met. Ceram.
12
,
476
480
(
1973
).
You do not currently have access to this content.