In this paper, a new electronic system is designed for methane gas laser analyzers using the tunable diode laser absorption spectroscopy (TDLAS) technique. This electronic system is presented in such a way that, based on this technique, optical wavelength and stability confirm the power of the laser light source. The proposed design includes current and temperature control circuits, amplifier circuits, and laser sensor circuits. This system leads to the control of laser light power. Due to the high cost of a laser sensor distributed feedback diode (DFB) and the impossibility of purchasing it for the actual implementation of the proposed electronic system, the design and simulation stage of this system was performed in the proteus simulator environment at normal atmospheric temperature and constant control flow conditions. The simulation results show that the proposed new electronic system based on the TDLAS technique detected the amount of leaking methane gas by generating a wavelength of 1653.72 nm related to the DFB laser sensor and displaying it on display during calculation. The test of optical wavelength stability, optical power, and methane gas wavelength generation by the laser sensor in the proteus simulator environment at different distances is excellent and remarkable. These results show that if we buy a laser sensor and build a gas analyzer device, we can achieve perfect results by using the device with the provided technique.

1.
R.
Wang
and
H.
Feng
, “
Tunable diode laser absorption spectrometer coal mine methane detection system based on DSP
,” in
2010 Symposium on Photonics and Optoelectronics
,
China
, 19–21 June 2010 (IEEE, Chengdu, China, 2010), pp. 1–4.
2.
F.
Song
and
C.
Zheng
, “
Interband cascade laser-based PPBV-level mid-infrared methane detection using two digital lock-in amplifier schemes
,”
Appl. Phys. B
124
, 50–58 (
2018
).
3.
C.-T.
Zheng
,
W.-L.
Ye
,
J.-Q.
Huang
,
T.-S.
Cao
,
M.
Lv
,
J.-M.
Dang
, and
Y.-D.
Wang
, “
Performance improvement of a near-infrared CH4 detection device using wavelet-denoising-assisted wavelength modulation technique
,”
Sens. Actuators B
190
,
249
258
(
2014
).
4.
L.
Jun
,
T.
Qiulin
,
Z.
Wendong
,
X.
Chenyang
,
G.
Tao
, and
X.
Jijun
, “
Miniature low-power IR monitor for methane detection
,”
Measurement
44
,
823
831
(
2011
).
5.
A. R.
Brandt
,
G. A.
Heath
,
E. A.
Kort
 et al, “
Energy and environment: Methane leaks from North American natural gas systems
,”
Science
343
,
733
735
(
2014
).
6.
G.
Zhong
,
Z.
Ma
,
J.
Wang
,
C.
Zheng
,
Y.
Zhang
,
Y.
Wang
, and
F. K.
Tittel
, “
Near-infrared tunable laser absorption spectroscopic acetylene sensor system using a novel three mirror-based, dense pattern gas cell
,”
Sensors
20
,
1266
(
2020
).
7.
C.-T.
Zheng
,
J.-Q.
Huang
,
W.-L.
Ye
,
M.
Lv
,
J.-M.
Dang
,
T.-S.
Cao
,
C.
Chen
, and
Y.-D.
Wang
, “
Demonstration of a portable near-infrared CH4 detection sensor based on tunable diode laser absorption spectroscopy
,”
Infrared Phys. Technol.
61
,
306
312
(
2013
).
8.
J.
Shemshad
,
S. M.
Aminossadati
, and
M. S.
Kizil
, “
A review of developments in near-infrared methane detection based on tunable diode laser
,”
Sens. Actuators B
171–172
,
77
92
(
2012
).
9.
J.
Wang
,
B.
Li
,
G.
Lin
,
Q.
Ma
,
S.
Wang
, and
M.
Piao
, “
Near-infrared methane sensor based on a distributed feedback laser
,”
Int. J. Rapid Commun.
52
,
113
120
(
2019
).
10.
V.
Spagnolo
,
A. A.
Kosterev
,
L.
Dong
,
R.
Lewicki
, and
F. K.
Tittel
, “
NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser
,”
Appl. Phys. B
100
,
125
130
(
2010
).
11.
A.
Asmari
,
J.
Hodgkinson
,
E.
Chehura
,
S. E.
Staines
, and
R. P.
Tatam
, “
All-electronic frequency stabilization of a DFB laser diode
,”
Opt. Express
25
,
11679
(
2017
).
12.
Y.
Xie
,
J.
Chang
,
X.
Chen
,
J.
Sun
,
Q.
Zhang
,
F.
Wang
,
Z.
Zhang
, and
Y.
Feng
, “
A DFB-LD internal temperature fluctuation analysis in a TDLAS system for gas detection
,”
IEEE Photonics J.
11
, 1–8 (
2019
).
13.
X.
Zhang
,
Y.
Chen
 et al, “
Research on drive and control technology of external modulated DFB laser diode
,” in
9th International Conference on Electronic Measurement & Instruments
,
China
, 16–19 August 2009 (IEEE, Beijing, China, 2009), pp. 3-961–3-965.
14.
Q.
He
,
C.
Zheng
,
H.
Liu
,
B.
Lin
,
Y.
Wang
, and
F. K.
Tittel
, “
A near-infrared acetylene detection system based on a 1.534 lm tunable diode laser and a miniature gas chamber
,”
Infrared Phys. Technol.
75
,
93
99
(
2016
).
15.
A.
Ghorbanzadeh
,
Active and Remote Gas Leak Detection System in Transmission Lines Using Laser Absorption Spectroscopy
(
National Iranian Gas Company, University of Tehran
,
Tehran
,
2018
).
16.
L.
Geeta
and
B.
Rohit
, “
Design and implementation of LPG gas detector using GSM module
,”
International Journal on Emerging Technologies (Special Issue NCETST-2017)
8
(1),
98
100
(
2017
).
17.
R.
Okeke
and
M.
Ehikhamenle
, “
Design and simulation of gas and fire detector and alarm system with water sprinkle
,”
Int. J Rng. Res. Gen. Sci.
5
(1),
216
225
(
2017
).
18.
T.
Soundarya
,
J. V.
Anchitaalagammai
,
P.
Deepa
, and
S. S. K.
Kumar
, “
C-leakage: Cylinder LPG Gas Leakage Detection for home safety
,”
IOSR Journal of Electronics and Communication (IOSR-JECE)
9
,
53
58
(
2014
).
19.
P.
Werle
,
F.
Slemr
,
K.
Maurer
,
R.
Kormann
,
R.
Mücke
, and
B.
Jänker
, “
Near- and mid-infrared laser-optical sensors for gas analysis
,”
Opt. Lasers Eng.
37
,
101
114
(
2002
).
20.
L. S.
Rothman
,
I. E.
Gordon
,
A.
Barbe
 et al, “
The HITRAN 2008 molecular spectroscopic database
,”
J. Quant. Spectrosc. Radiat. Transfer
110
,
533
572
(
2009
).
21.
B.
Li
,
C.
Zheng
,
H.
Liu
,
Q.
He
,
W.
Ye
,
Y.
Zhang
,
J.
Pan
, and
Y.
Wang
, “
Development and measurement of a near-infrared CH4 detection system using 1.654 nm wavelength modulated diode laser and open reflective gas sensing probe
,”
Sens. Actuators B
225
,
188
198
(
2016
).
22.
M.
Lackner
, “
Tunable diode laser absorption spectroscopy (TDLAS) in the process industries—A review
,”
Rev. Chem. Eng.
23
,
5
147
(
2007
).
23.
A. C.
Eckbreth
,
Laser Diagnostics for Combustion Temperature and Species
(
ABACUS
,
Cambridge MA
,
1988
).
24.
Y.
Tian
,
J.
Wei
 et al., “
Drive design and performance test of a tunable DFB laser
,” in
2017 Chinese Automation Congress (CAC)
,
China
, 20–22 October 2017 (IEEE, Jinan, China, 2017), pp.
4024
4027
.
25.
H. S.
Nalwa
,
Photodetectors and Fiber Optics
, 1st Ed. (
Elsevier
,
2001
).
26.
W.
Wei
,
J.
Chang
,
Q.
Wang
, and
Z.
Qin
, “
Modulation index adjustment for recovery of pure wavelength modulation spectroscopy second harmonic signal waveforms
,”
Sensors
17
,
163
(
2017
).
27.
X.
Qiu
,
Y.
Wei
,
N.
Li
 et al, “
Development of an early warning fire detection system based on a laser spectroscopic carbon monoxide sensor using a 32-bit system-on-chip
,”
Infrared Phys. Technol.
96
,
44
51
(
2019
).
28.
C.
Zhu
,
R.
Wang
,
X.
Tao
,
G.
Wang
, and
P.
Wang
, “
A robust distributed multipoint fiber optic gas sensor system based on AGC amplifier structure
,”
Sensors
16
,
1187
(
2016
).
29.
W.-L.
Ye
,
C.-T.
Zheng
,
X.-Y.
Cheng
,
F.-P.
Wu
,
M.-M.
Chen
, and
Y.-D.
Wang
, “
Mid-infrared ppm-level methane detection device using small-size absorption pool and dual-channel lock-in amplifier
,”
Infrared Phys. Technol.
71
,
339
346
(
2015
).
30.
J.
Wang
,
H.
Wang
, and
X.
Liu
, “
A portable laser photo acoustic methane sensor based on FPGA
,”
Sensors
16
,
1551
(
2016
).
31.
A.
Klein
,
O.
Witzel
, and
V.
Ebert
, “
Rapid time-division multiplexed, direct absorption, and wavelength modulation-spectroscopy
,”
Sensors
14
,
21497
21513
(
2014
).
32.
https://www.spectraplot.com/absorption To obtain the molar absorption coefficient of the methane gas, the desired information is entered in this site and the best absorption band is selected appropriate to the wavelength of 1653.72 nm.
You do not currently have access to this content.