Laser welding of A516 steel was performed using the filler metal to serve as the interlayer. The effects of laser welding parameters on the melt pool microstructure, weld bead shape, dimensions of the melt pool, and temperature field around the melt pool were investigated. The results indicated that the nozzle distance had the most significant influence on the temperature around the molten pool. As the maximum energy of the laser beam was irradiated on the center of the filler, the highest value of the temperature near the fusion zone was about 360°C. The welding speed, determining the overlap factor, had a considerable effect on the weld bead shape. The laser power, therefore, could determine laser beam line energy to melt the filler volume effectively. Enhancing the laser power up to 450 W increased the temperature to about 300 °C; also, the melting rate of the filler used was almost completed and the weld bead appearance was clearly improved; therefore, the width of the melt pool was increased by about 10%. Increasing the nozzle distance from 3 to 7 mm also reduced the width of the molten pool by about 75% and 40% with and without the filler, respectively. By using the filler metal, the geometry of the welding bead changed from a concave one to a convex one. The major fusion zone microstructure of the fusion zone was an acicular ferrite characterized by needle-shaped ferrite crystallites.

1.
K.
Cvecek
,
S.
Dehmel
,
I.
Miyamoto
, and
M.
Schmidt
, “
A review on glass welding by ultra-short laser pulses
,”
Int. J. Extreme Manuf.
1
,
042001
(
2019
).
2.
T.
Kasuga
,
T.
Sano
, and
A.
Hirose
, “
Grain refining in weld metal using short-pulsed laser ablation during CW laser welding of 2024-T3 aluminum alloy
,”
Int. J. Extreme Manuf.
1
,
045003
(
2019
).
3.
J.
Xie
,
Y.
Chen
,
L.
Yin
,
T.
Zhang
,
S.
Wang
, and
L.
Wang
, “
Microstructure and mechanical properties of ultrasonic spot welding TiNi/Ti6Al4V dissimilar materials using pure Al coating
,”
J. Manuf. Process.
64
,
473
480
(
2021
).
4.
Y.
Zhong
,
J.
Xie
,
Y.
Chen
,
L.
Yin
,
P.
He
, and
W.
Lu
, “
Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer
,”
Mater. Lett.
306
,
130896
(
2022
).
5.
Z.
Zhang
,
F.
Yang
,
H.
Zhang
,
T.
Zhang
,
H.
Wang
,
Y.
Xu
, and
Q.
Ma
, “
Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating
,”
Mater. Charact.
171
, 110732 (
2021
).
6.
Z.
Wu
,
S.
Wu
,
J.
Bao
,
W.
Qian
,
S.
Karabal
,
W.
Sun
, and
P. J.
Withers
, “
The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion
,”
Int. J. Fatigue
151
,
106317
(
2021
).
7.
X.
Li
,
X.
Yang
,
D.
Yi
,
B.
Liu
,
J.
Zhu
,
J.
Li
, and
L.
Wang
, “
Effects of NbC content on microstructural evolution and mechanical properties of laser cladded Fe50Mn30Co10Cr10-xNbC composite coatings
,”
Intermetallics
138
,
107309
(
2021
).
8.
X.
Li
,
D.
Yi
,
X.
Wu
 et al., “
Effect of construction angles on microstructure and mechanical properties of AlSi10Mg alloy fabricated by selective laser melting
,”
J. Alloys Compd.
881
,
160459
(
2021
).
9.
X.
Li
,
Q.
Yu
,
X.
Chen
, and
Q.
Zhang
, “
Microstructures and electrochemical behaviors of casting magnesium alloys with enhanced compression strengths and decomposition rates
,”
J. Magn. Alloys
(to be published 2021).
10.
M. P.
Prabakaran
and
G. R.
Kannan
, “
Effects of post-weld heat treatment on dissimilar laser welded joints of austenitic stainless steel to low carbon steel
,”
Int. J. Pressure Vessels Piping
191
,
104322
(
2021
).
11.
A. I.
Khdair
,
M.
Hader
,
K.
Abushgair
, and
S.
Khrais
, “
Effect of sheet thickness on the fusion zone temperature distribution, melt pool dimensions, mechanical properties, and microstructure in laser welding of Ti6Al4V alloy
,”
J. Laser Appl.
33
,
032005
(
2021
).
12.
P. I.
Oliveira
,
A.
Loureiro
,
J. M.
Costa
,
J.
Ferreira
, and
L.
Borrego
, “
Fatigue strength assessment of misaligned laser beam welded T-joints by effective stress method
,”
Int. J. Pressure Vessels Piping
173
,
68
78
(
2019
).
13.
X.
Chen
,
J.
Fu
,
Y.
Zhao
,
Y.
Jiang
,
K.
Yan
,
C.
Jiang
, and
J.
Chen
, “
Melting behavior in ultrasonic-assisted narrow-gap laser welding with filler wire
,”
J. Laser Appl.
33
,
012058
(
2021
).
14.
M.
Azari
,
E.
Rasti
,
M. H. R.
Dehkordi
,
H.
Azimy
,
A.
Zarei
, and
S. A.
Bagherzadeh
, “
Investigation of temperature distribution and melt pool microstructure in laser fusion welding of inconel 625 superalloy
,”
J. Laser Appl.
33
,
022015
(
2021
).
15.
G.
Shanthos Kumar
,
K.
Raghukandan
,
S.
Saravanan
, and
N.
Sivagurumanikandan
, “
Optimization of parameters to attain higher tensile strength in pulsed Nd:YAG laser welded Hastelloy C-276–Monel 400 sheets
,”
Infrared Phys. Technol.
100
,
1
10
(
2019
).
16.
C.
Li
,
J.
Huang
,
K.
Wang
,
Z.
Chen
, and
Q.
Liu
, “
Optimization of processing parameters of laser skin welding in vitro combining the response surface methodology with NSGA- II
,”
Infrared Phys. Technol.
103
,
103067
(
2019
).
17.
S. S.
Sarkar
,
A.
Das
,
S.
Paul
,
A.
Ghosh
,
K.
Mali
,
R.
Sarkar
, and
A.
Kumar
, “
Infrared imaging based machine vision system to determine transient shape of isotherms in submerged arc welding
,”
Infrared Phys. Technol.
109
,
103410
(
2020
).
18.
Y.
Yongbin
,
S. A.
Bagherzadeh
,
H.
Azimy
,
M.
Akbari
, and
A.
Karimipour
, “
Comparison of the artificial neural network model prediction and the experimental results for cutting region temperature and surface roughness in laser cutting of AL6061T6 alloy
,”
Infrared Phys. Technol.
108
,
103364
(
2020
).
19.
A. V.
Vorontsov
,
A. V.
Dmitriev
, and
V. A.
Beloborodov
,
AIP Conf. Proc.
2051
,
020324
(
2018
).
20.
J. R.
Deepak
,
V. K.
Bupesh Raja
,
H.
Soundararajan
, and
P.
Bhumireddy
, “
Laser welding of ASTM Corten A588 grade steel –A case study
,”
Mater. Today: Proc.
47
, 4820–4826 (
2021
).
21.
C.
Ma
,
B.
Chen
,
C.
Tan
,
X.
Song
, and
J.
Feng
, “
Characteristics of droplet transfer, molten pool formation, and weld bead formation of oscillating laser hot-wire tungsten inert gas hybrid welding
,”
J. Laser Appl.
33
,
012027
(
2021
).
22.
X.
Dong
,
G.
Wang
, and
M.
Ghaderi
, “
Experimental investigation of the effect of laser parameters on the weld bead shape and temperature distribution during dissimilar laser welding of stainless steel 308 and carbon steel St 37
,”
Infrared Phys. Technol.
116
,
103774
(
2021
).
23.
G.
Senthilkumar
and
R.
Ramakrishnan
, “
A comparative study of predicting burn off length in continuous drive solid state friction welding for ASTM A516 steel by regression analysis, fuzzy logic analysis and finite element analysis
,”
J. Appl. Sci. Eng.
24
,
359
366
(
2021
).
24.
R. G. N.
Silva
,
M. B.
Rodrigues
,
J. M. S.
de Sousa
,
M.
Pereira
,
B. B.
Ramos
,
M. B.
Schwedersky
, and
R. H.
Gonçalves e Silva
, “
A comparison between LBW and hybrid laser-GMAW processes based on microstructure and weld geometry for hardenable steels
,”
Int. J. Adv. Manuf. Technol.
110
,
2801
2814
(
2020
).
25.
M. P.
Prabakaran
,
G. R.
Kannan
, and
R.
Pandiyarajan
, “
Effects of welding speed on microstructure and mechanical properties of CO2 laser welded dissimilar butt joints between low carbon steel and austenitic stainless steel
,”
Adv. Mater. Process. Technol.
6,
1
12
(
2020
).
26.
K.
Oussaid
,
A.
El Ouafi
, and
A.
Chebak
, “
Experimental investigation of laser welding process in overlap joint configuration
,”
J. Mater. Sci. Chem. Eng.
07
,
16
31
(
2019
).
27.
M. P.
Prabakaran
and
G. R.
Kannan
, “
Optimization of laser welding process parameters in dissimilar joint of stainless steel AISI316/AISI1018 low carbon steel to attain the maximum level of mechanical properties through PWHT
,”
Opt. Laser Technol.
112
,
314
322
(
2019
).
28.
T. I.
Ogedengbe
,
T. E.
Abioye
, and
A. I.
Ekpemogu
, “
Investigation of mechanical properties and parametric optimization of the dissimilar GTAW of AISI 304 stainless steel and low carbon steel
,”
World J. Eng.
15
,
584
591
(
2018
).
29.
E. M.
Stanciu
 et al., “
Dissimilar laser welding of AISI 321 and AISI 1010
,”
Tehnički Vjesnik
25
,
344
349
(
2018
).
30.
M. P.
Prabakaran
and
G. R.
Kannan
, “
Optimization and metallurgical studies of CO2 laser welding on austenitic stainless steel to carbon steel joint
,”
Ferroelectrics
519
,
223
235
(
2017
).
31.
P.
Peasura
, “
Application of response surface methodology for modeling of postweld heat treatment process in a pressure vessel steel ASTM A516 Grade 70
,”
Sci. World J.
2015
,
318475
(
2015
).
32.
A.
Ascari
and
A.
Fortunato
, “
Nanosecond pulsed laser welding of high carbon steels
,”
Opt. Laser Technol.
56
,
25
34
(
2014
).
33.
J.
Chen
,
A.
Laver
,
R.
Zavadil
,
J.
Liang
, and
W.
Zheng
, “
Laser and electron beam welding of 25mm thick A516 Gr.70 steel
,”
Int. Congress Appl. Lasers Electro-Opt.
2013
,
351
355
(
2013
).
34.
M. J.
Torkamany
,
J.
Sabbaghzadeh
, and
M. J.
Hamedi
, “
Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels
,”
Mater. Des.
34
,
666
672
(
2012
).
35.
M. J.
Torkamany
,
S.
Tahamtan
, and
J.
Sabbaghzadeh
, “
Dissimilar welding of carbon steel to 5754 aluminum alloy by Nd:YAG pulsed laser
,”
Mater. Des.
31
,
458
465
(
2010
).
36.
S.
Beretta
and
B.
Previtali
, “
Estimate of maximum pore size in keyhole laser welding of carbon steel
,”
Sci. Technol. Welding Joining
14
,
106
116
(
2009
).
37.
M.
Taskin
,
U.
Caligulu
, and
S.
Kolukisa
, “
The effect of welding speed on the laser welding of AISI 430 ferritic stainless—AISI 1010 low-carbon steel
,”
Practical Metallogr.
46
,
598
608
(
2009
).
38.
Annual Book of ASTM Standards
, ASTM Volume 01.04 Steel–Structural, Reinforcing, Pressure Vessel, Railway.
You do not currently have access to this content.