Laser engineered net shape (LENS) technology was applied for repairing Mar-M247, and the influence of the Mar-M247 microstructure and LENS process parameters on the repair weldability was investigated. The results show that the cracking susceptibility of Mar-M247 was very high and cracking was initiated in the Mar-M247 heat-affected zone (HAZ) and then propagated into the LENS deposit. The HAZ cracking was quite sensitive to the presence of carbides in the base material, with even small quantities of carbide leading to the initiation of cracking in the deposit, which can be greatly suppressed by optimizing LENS process parameters but not eliminated. In addition, solution annealing of the as-cast base metal prior to repair significantly reduced the cracking susceptibility. Cracking was further suppressed by the aging treatment. Under the complete homogenized Mar-M247 blade, the simulated tip erosion damage was successfully repaired without cracking by optimizing LENS process parameters.

1.
R. C.
Reed
,
The Superalloys Fundamentals and Applications
(
Cambridge University
, Cambridge,
2008
).
2.
J. N.
DuPont
,
J. C.
Lippold
, and
S. D.
Kiser
,
Welding Metallurgy and Weldability of Nickel-Base Alloys
(
Wiley
, Hoboken,
2009
).
3.
Y.
Hu
, “High-strength superalloy joining method for repairing turbine blades,” EP1697081A1 (
30 June 2005
).
4.
R. K.
Sidhu
,
O. A.
Ojo
, and
M. C.
Chaturvedi
, “
Microstructural analysis of laser-beam-welded directionally solidified INCONEL 738
,”
Metall. Mater. Trans. A
38
,
858
870
(
2007
).
5.
A. T.
Egbewande
,
R. A.
Buckson
, and
O. A.
Ojo
, “
Analysis of laser beam weldability of Inconel 738 superalloy
,”
Mater. Charact.
61
,
569
574
(
2010
).
6.
N.
Sridharan
,
Y.
Lee
,
B. H.
Jordan
,
R.
Ramakrishnan
,
J.
Robertson
, and
R.
Dehoff
,
Repairing Polycrystalline IN 100 Using Additive Manufacturing
[
Oak Ridge National Lab. (ORNL)
,
Oak Ridge
,
TN
,
2019
].
7.
G.
Bidron
,
A.
Doghri
,
T.
Malot
,
F.
Fournier-Dit-Chabert
,
M.
Thomas
, and
P.
Peyre
, “
Reduction of the hot cracking sensitivity of CM-247LC superalloy processed by laser cladding using induction preheating
,”
J. Mater. Process. Technol.
277
,
116461
(
2020
).
8.
M. F.
Chiang
and
C.
Chen
, “
Induction-assisted laser welding of IN-738 nickel-base superalloy
,”
Mater. Chem. Phys.
114
,
415
419
(
2009
).
9.
D. S.
Duvall
,
W. A.
Owczarski
,
D. F.
Paulonis
, and
W. H.
King
, “
Methods for diffusion welding the superalloy Udimet 700
,”
Weld. J. Res. Suppl.
51
, 41–49 (
1972
).
10.
D. Clark and D. Routledge, “Method of repairing a component,” EP2492044A1 (29 August 2012).
11.
A.
Hu
,
D.
Bridges
,
S.
Zhang
, and
Z.
Feng
, “
Nanobrazing for turbine blade and vane repair
,”
Adv. Mater. Process
175
,
25
29
(
2017
).
12.
X.
Huang
and
W.
Miglietti
, “
Wide gap braze repair of gas turbine blades and vanes—A review
,”
J. Eng. Gas Turbines Power
134
,
010801
(
2012
).
13.
W. A.
Demo
and
S. J.
Ferigno
, “
Brazing method helps repair aircraft gras-turbine nozzles
,”
Adv. Mater. Process.
141
,
43
45
(
1992
).
14.
D.
Nagy
and
X.
Huang
, “
Wide gap braze repair using vertically laminated repair scheme
,”
J. Eng. Gas Turbines Power
131
,
12101
(
2009
).
15.
R. D.
Wustman
,
L. M.
Hampson
,
J. S.
Smith
, and
M. E.
Suneson
, “
High strength diffusion braze repair for gas turbine components
,” in
ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, Birmingham, UK, June 10–13, 1996
(
American Society of Mechanical Engineers Digital Collection
, New York,
1996
).
16.
R. K.
Sidhu
,
O. A.
Ojo
, and
M. C.
Chaturvedi
, “
Microstructural response of directionally solidified René 80 superalloy to gas-tungsten arc welding
,”
Metall. Mater. Trans. A
40
,
150
162
(
2009
).
17.
M.
Qian
and
J. C.
Lippold
, “
Liquation phenomena in the simulated heat-affected zone of alloy 718 after multiple postweld heat treatment cycles
,”
Weld. J.
82
,
145S
150S
(
2003
).
18.
K.-C.
Chen
,
T.-C.
Chen
,
R.-K.
Shiue
, and
L.-W.
Tsay
, “
Liquation cracking in the heat-affected zone of IN738 superalloy weld
,”
Metals (Basel)
8
,
387
(
2018
).
19.
M. T.
Rush
,
P. A.
Colegrove
,
Z.
Zhang
, and
D.
Broad
, “
Liquation and post-weld heat treatment cracking in Rene 80 laser repair welds
,”
J. Mater. Process. Technol.
212
,
188
197
(
2012
).
20.
K. L.
Gasko
,
G. M.
Janowski
, and
B. J.
Pletka
, “
The influence of γ-γ′ eutectic on the mechanical properties of conventionally cast MAR-M247
,”
Mater. Sci. Eng. A
104
,
1
8
(
1988
).
21.
J.
Chen
,
J. H.
Lee
,
C. Y.
Jo
,
S. J.
Choe
, and
Y. T.
Lee
, “
MC carbide formation in directionally solidified MAR-M247 LC superalloy
,”
Mater. Sci. Eng. A
247
,
113
125
(
1998
).
22.
S.
Milenkovic
,
I.
Sabirov
, and
J.
LLorca
, “
Effect of the cooling rate on microstructure and hardness of MAR-M247 Ni-based superalloy
,”
Mater. Lett.
73
,
216
219
(
2012
).
23.
D.
Liu
,
J. C.
Lippold
,
J.
Li
,
S. R.
Rohklin
,
J.
Vollbrecht
, and
R.
Grylls
, “
Laser engineered net shape (LENS) technology for the repair of Ni-base superalloy turbine components
,”
Metall. Mater. Trans. A
45
,
4454
4469
(
2014
).
You do not currently have access to this content.