Real biological tissues show a great variety of different geometric morphologies with special features on different geometric scales. An interesting example is the liver lobule that is the basic subunit of a liver. The lobule is a quasihexagonal macroscopic structure with periodic like so-called sinusoidal elements with structural features on the micro- and macroscale made of proteins, cells, and fluids. Various tools from micromachining and nanotechnology have demonstrated their capabilities to construct micromorphologies precisely, but even the reconstruction of such a system in technical polymers is challenging. In this work, the rapidly evolving technique of multiphoton polymerization has been explored for the construction of a scaffold that mimics the micromorphology of the liver with high resolution and detail up to the millimeter scale. At the end, a highly complex fluidically perfusable structure was achieved and simulations showed that the occurring shear stress, fluid velocity, and stream lines are comparable to the native liver lobule. Hereby, the photoresists SU-8 and SUEX TDFS were compared in terms of their processability, achievable resolution, and suitability for the intended application. Our results have shown that SUEX needs lower writing velocities but is easier to process and achieves a considerable higher resolution than SU-8. The scaffold could provide a base frame with a geometrically defined morphology for hepatic cells to adhere to, which could act as a starting point for cells to build new liver tissue for further integration in more complex systems.

1.
A.
Schober
,
U.
Fernekorn
,
S.
Singh
,
G.
Schlingloff
,
M.
Gebinoga
,
J.
Hampl
, and
A.
Williamson
, “
Mimicking the biological world: Methods for the 3D structuring of artificial cellular environments
,”
Eng. Life Sci.
13
,
352
367
(
2013
).
2.
M.
Kapałczyńska
,
T.
Kolenda
,
W.
Przybyła
,
M.
Zajączkowska
,
A.
Teresiak
,
V.
Filas
,
M.
Ibbs
,
R.
Bliźniak
,
Ł
Łuczewski
, and
K.
Lamperska
, “
2D and 3D cell cultures—A comparison of different types of cancer cell cultures
,”
Arch. Med. Sci.
14
,
910
919
(
2018
).
3.
T.
Weiß
,
G.
Hildebrand
,
R.
Schade
, and
K.
Liefeith
, “
Two-photon polymerization for microfabrication of three-dimensional scaffolds for tissue engineering application
,”
Eng. Life Sci.
9
,
384
390
(
2009
).
4.
B.
Zhang
,
A.
Korolj
,
B. F. L.
Lai
, and
M.
Radisic
, “
Advances in organ-on-a-chip engineering
,”
Nat. Rev. Mater.
3
,
257
278
(
2018
).
5.
A.
Williamson
,
S.
Singh
,
U.
Fernekorn
, and
A.
Schober
, “
The future of the patient-specific body-on-a-chip
,”
Lab Chip
13
,
3471
3480
(
2013
).
6.
L.
Xia
,
S.
Ng
,
R.
Han
,
X.
Tuo
,
G.
Xiao
,
H. L.
Leo
,
T.
Cheng
, and
H.
Yu
, “
Laminar-flow immediate-overlay hepatocyte sandwich perfusion system for drug hepatotoxicity testing
,”
Biomaterials
30
,
5927
5936
(
2009
).
7.
Z.
Jia
,
Y.
Cheng
,
X.
Jiang
,
C.
Zhang
,
G.
Wang
,
J.
Xu
,
Y.
Li
,
Q.
Peng
, and
Y.
Gao
, “
3D culture system for liver tissue mimicking hepatic plates for improvement of human hepatocyte (C3A) function and polarity
,”
BioMed. Res. Int.
2020
,
6354183
.
8.
X.
Cui
and
T.
Boland
, “
Human microvasculature fabrication using thermal inkjet printing technology
,”
Biomaterials
30
,
6221
6227
(
2009
).
9.
A.
Skardal
,
J.
Zhang
, and
G. D.
Prestwich
, “
Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates
,”
Biomaterials
31
,
6173
6181
(
2010
).
10.
B.
Duan
,
L. A.
Hockaday
,
K. H.
Kang
, and
J. T.
Butcher
, “
3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels
,”
J. Biomed. Mater. Res. A
101
,
1255
1264
(
2013
).
11.
Y.
Nahmias
,
R. E.
Schwartz
,
C. M.
Verfaillie
, and
D. J.
Odde
, “
Laser-guided direct writing for three-dimensional tissue engineering
,”
Biotechnol. Bioeng.
92
,
129
136
(
2005
).
12.
J. W.
Jung
,
J.-S.
Lee
, and
D.-W.
Cho
, “
Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs
,”
Sci. Rep.
6
,
21685
(
2016
).
13.
X.
Li
,
J.
He
,
W.
Zhang
,
N.
Jiang
, and
D.
Li
, “
Additive manufacturing of biomedical constructs with biomimetic structural organizations
,”
Materials (Basel)
9
,
909
(
2016
).
14.
S. M.
Giannitelli
,
P.
Mozetic
,
M.
Trombetta
, and
A.
Rainer
, “
Combined additive manufacturing approaches in tissue engineering
,”
Acta Biomater.
24
,
1
11
(
2015
).
15.
W.
Bian
,
D.
Li
,
Q.
Lian
,
X.
Li
,
W.
Zhang
,
K.
Wang
, and
Z.
Jin
, “
Fabrication of a bio-inspired beta-tricalcium phosphate/collagen scaffold based on ceramic stereolithography and gel casting for osteochondral tissue engineering
,”
Rapid Prototyp. J.
18
,
68
80
(
2012
).
16.
L.
Moroni
,
R.
Schotel
,
D.
Hamann
,
J. R.
de Wijn
, and
C. A.
van Blitterswijk
, “
3D fiber-deposited electrospun integrated scaffolds enhance cartilage tissue formation
,”
Adv. Funct. Mater.
18
,
53
60
(
2008
).
17.
J.
Jensen
,
J. H. D.
Rölfing
,
D. Q.
Svend Le
,
A. A.
Kristiansen
,
J. V.
Nygaard
,
L. B.
Hokland
,
M.
Bendtsen
,
M.
Kassem
,
H.
Lysdahl
, and
C. E.
Bünger
, “
Surface-modified functionalized polycaprolactone scaffolds for bone repair: In vitro and in vivo experiments
,”
J. Biomed. Mater. Res. Part A
102
,
2993
3003
(
2014
).
18.
H.
Yao
,
J.
Wang
, and
S.
Mi
, “
Photo processing for biomedical hydrogels design and functionality: A review
,”
Polymers
10
,
11
(
2017
).
19.
A.
Žukauskas
,
M.
Malinauskas
,
L.
Kontenis
,
V.
Purlys
,
D.
Paipulas
,
M.
Vengris
, and
R.
Gadonas
, “
Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique
,”
Lithuanian J. Phys.
50
,
55
61
(
2010
).
20.
Y.-L.
Sun
,
W.-F.
Dong
,
R.-Z.
Yang
,
X.
Meng
,
L.
Zhang
,
Q.-D.
Chen
, and
H.-B.
Sun
, “
Dynamically tunable protein microlenses
,”
Angew. Chem. Int. Ed. Engl.
51
,
1558
1562
(
2012
).
21.
F.
Klein
,
B.
Richter
,
T.
Striebel
,
C. M.
Franz
,
G. v.
Freymann
,
M.
Wegener
, and
M.
Bastmeyer
, “
Two-component polymer scaffolds for controlled three-dimensional cell culture
,”
Adv. Mater.
23
,
1341
1345
(
2011
).
22.
G. M.
Hjortø
,
M. H.
Olsen
,
I. M.
Svane
, and
N. B.
Larsen
, “
Confinement dependent chemotaxis in two-photon polymerized linear migration constructs with highly definable concentration gradients
,”
Biomed. Microdevices
17
,
30
(
2015
).
23.
L.
Yang
,
J.
Wei
,
Z.
Ma
,
P.
Song
,
J.
Ma
,
Y.
Zhao
,
Z.
Huang
,
M.
Zhang
,
F.
Yang
, and
X.
Wang
, “
The fabrication of micro/nano structures by laser machining
,”
Nanomaterials (Basel)
9
,
1789
(
2019
).
24.
A.
Ovsianikov
,
A.
Deiwick
,
S.
van Vlierberghe
,
M.
Pflaum
,
M.
Wilhelmi
,
P.
Dubruel
, and
B.
Chichkov
, “
Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues
,”
Materials (Basel)
4
,
288
299
(
2011
).
25.
K.
Parkatzidis
,
E.
Kabouraki
,
A.
Selimis
,
M.
Kaliva
,
A.
Ranella
,
M.
Farsari
, and
M.
Vamvakaki
, “
Initiator-free, multiphoton polymerization of gelatin methacrylamide
,”
Macromol. Mater. Eng.
303
,
1800458
(
2018
).
26.
O.
Kufelt
,
A.
El-Tamer
,
C.
Sehring
,
S.
Schlie-Wolter
, and
B. N.
Chichkov
, “
Hyaluronic acid based materials for scaffolding via two-photon polymerization
,”
Biomacromolecules
15
,
650
659
(
2014
).
27.
A. I.
Ciuciu
and
P. J.
Cywiński
, “
Two-photon polymerization of hydrogels—Versatile solutions to fabricate well-defined 3D structures
,”
RSC Adv.
4
,
45504
45516
(
2014
).
28.
S. A.
Khan
,
L. A.
Shah
,
M.
Shah
, and
I.
Jamil
, “
Engineering of 3D polymer network hydrogels for biomedical applications: A review
,”
Polym. Bull.
(
published on line
,
2021
).
29.
C.-H.
Lin
,
G.-B.
Lee
,
B.-W.
Chang
, and
G.-L.
Chang
, “
A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist
,”
J. Micromech. Microeng.
12
,
590
597
(
2002
).
30.
P.
Abgrall
,
V.
Conedera
,
H.
Camon
,
A.-M.
Gue
, and
N.-T.
Nguyen
, “
SU-8 as a structural material for labs-on-chips and microelectromechanical systems
,”
Electrophoresis
28
,
4539
4551
(
2007
).
31.
A.
Mata
,
A. J.
Fleischman
, and
S.
Roy
, “
Fabrication of multi-layer SU-8 microstructures
,”
J. Micromech. Microeng.
16
,
276
284
(
2006
).
32.
K. V.
Nemani
,
K. L.
Moodie
,
J. B.
Brennick
,
A.
Su
, and
B.
Gimi
, “
In vitro and in vivo evaluation of SU-8 biocompatibility
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
33
,
4453
4459
(
2013
).
33.
M.
Marelli
,
G.
Divitini
,
C.
Collini
,
L.
Ravagnan
,
G.
Corbelli
,
C.
Ghisleri
,
A.
Gianfelice
,
C.
Lenardi
,
P.
Milani
, and
L.
Lorenzelli
, “
Flexible and biocompatible microelectrode arrays fabricated by supersonic cluster beam deposition on SU-8
,”
J. Micromech. Microeng.
21
,
045013
(
2011
).
34.
S.-H.
Cho
,
N.
Xue
,
L.
Cauller
,
W.
Rosellini
, and
J.-B.
Lee
, “
A SU-8-based fully integrated biocompatible inductively powered wireless neurostimulator
,”
J. Microelectromech. Syst.
22
,
170
176
(
2013
).
35.
B. F. E.
Matarèse
,
P. L. C.
Feyen
,
A.
Falco
,
F.
Benfenati
,
P.
Lugli
, and
J. C.
deMello
, “
Use of SU-8 as a stable and biocompatible adhesion layer for gold bioelectrodes
,”
Sci. Rep.
8
,
5560
(
2018
).
36.
G.
Márton
,
E. Z.
Tóth
,
L.
Wittner
,
R.
Fiáth
,
D.
Pinke
,
G.
Orbán
,
D.
Meszéna
,
I.
Pál
,
E. L.
Győri
,
Z.
Bereczki
,
Á.
Kandrács
,
K. T.
Hofer
,
A.
Pongrácz
,
I.
Ulbert
, and
K.
Tóth
, “
The neural tissue around SU-8 implants: A quantitative in vivo biocompatibility study
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
112
,
110870
(
2020
).
37.
R.
Saxena
,
N. D.
Theise
, and
J. M.
Crawford
, “
Microanatomy of the human liver-exploring the hidden interfaces
,”
Hepatology
30
,
1339
1346
(
1999
).
38.
F.
Braet
and
E.
Wisse
, “
Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: A review
,”
Comp. Hepatol.
1
,
1
(
2002
).
39.
M.
Krishna
, “
Role of special stains in diagnostic liver pathology
,”
Clin. Liver Dis. (Hoboken)
2
,
S8
S10
(
2013
).
40.
S.
Claußen
, “
Die sauerstoffversorgung der leber
,”
Inaugural dissertation
(
Münster, Germany
,
1994
).
41.
E.
Kuntz
and
H.-D.
Kuntz
,
Hepatology Textbook and Atlas: History, Morphology, Biochemistry, Diagnostics Clinic, Therapy
(
Springer
,
Berlin
,
2008
).
42.
E.-M.
Materne
,
Generation of a Multi-Organ-Chip-Based Liver Equivalent for Toxicity Testing
,
Ph.D. Thesis
(
Berlin Institute of Technology, Berlin, Germany
,
2014
)
43.
J.
Borowiec
,
J.
Hampl
,
S.
Singh
,
S.
Haefner
,
K.
Friedel
,
P.
Mai
,
D.
Brauer
,
F.
Ruther
,
L.
Liverani
,
A. R.
Boccaccini
, and
A.
Schober
, “
3D microcontact printing for combined chemical and topographical patterning on porous cell culture membrane
,”
ACS Appl. Mater. Interfaces
10
,
22857
22865
(
2018
).
44.
F.
Weise
,
U.
Fernekorn
,
J.
Hampl
,
M.
Klett
, and
A.
Schober
, “
Analysis and comparison of oxygen consumption of HepG2 cells in a monolayer and three-dimensional high density cell culture by use of a matrigrid®
,”
Biotechnol. Bioeng.
110
,
2504
2512
(
2013
).
45.
J.
Borowiec
,
F.
Weise
,
J.
Hampl
,
P.
Mai
,
S.
Singh
,
B.
Martin
, and
A.
Schober
, see https://www.eposters.net/poster/micropatterned-polymer-scaffolds-for-guiding-3-dimensional-cultivation-of-cells for “Micropatterned polymer scaffolds for guiding 3-dimensional cultivation of cells” (2017)
46.
B. J.
Jung
,
H. J.
Kong
,
B. G.
Jeon
,
D.-Y.
Yang
,
Y.
Son
, and
K.-S.
Lee
, “
Autofocusing method using fluorescence detection for precise two-photon nanofabrication
,”
Opt. Express
19
,
22659
22668
(
2011
).
47.
C.
Ziebolz
, “
MPP-Anwendung zur strukturierung und integration von 3D-zellträgersystemen am beispiel hepatho sinusoidaler strukturen
,”
Master thesis
(
TU, Ilmenau
,
2019
).
48.
T. U.
Ilmenau
, see https://www.tu-ilmenau.de/biolithomorphie/ for details about biolithomorphie.
You do not currently have access to this content.