Visible light communication (VLC) is an exciting research area. VLC offers a significantly greater spectrum than radio frequency and is ideal for data communication. In VLC, the visible light spectrum, from 400 to 700 nm, is used for both lighting and communication. Gallium nitride-based light-emitting diodes (LEDs) and laser diodes are the optical sources in visible light communications. Laser diodes have an advantage over LEDs in visible light communication. VLC has applications in underwater communication, vehicle-to-vehicle communications, among others.

1.
S. U.
Rehman
,
S.
Ullah
,
P. H. J.
Chong
,
S.
Yongchareon
, and
D.
Komosny
, “
Visible light communication: A system perspective—Overview and challenges
,”
Sensors
19
,
1153
(
2019
).
2.
J.
Penning
,
K.
Stober
,
V.
Taylor
, and
M.
Yamada
,
Energy Savings Forecast of Solid-State Lighting in General Illumination Applications
(
Navigant Consulting Inc.
,
Washington, DC
,
2016
).
3.
P. H.
Pathak
,
X.
Feng
,
P.
Hu
, and
P.
Mohapatra
, “
Visible light communication, networking, and sensing: A survey, potential and challenges
,”
IEEE Commun. Surv. Tutor.
17
,
2047
2077
(
2015
).
4.
Y.
Tanaka
,
S.
Haruyama
, and
M.
Nakagawa
, “
Wireless optical transmissions with white colored LED for wireless home links
,” in
11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC 2000) Proceedings (Cat. No. 00TH8525)
, London, UK, 18–21 Sept. 2000 (IEEE,
2000
), pp.
1325
1329
.
5.
G. J.
Holzmann
and
B.
Pehrson
,
The Early History of Data Networks
(
IEEE Computer Society Press
, Hoboken, NJ,
1995
).
6.
H.
Elgala
,
A Study on the Impact of Nonlinear Characteristics of LEDs on Optical OFDM
(
Citeseer
, Bremen, Germany,
2010
).
7.
L. U.
Khan
, “
Visible light communication: Applications, architecture, standardization and research challenges
,”
Digit. Commun. Networks
3
,
78
88
(
2017
).
8.
M.
Akanegawa
,
Y.
Tanaka
, and
M.
Nakagawa
, “
Basic study on traffic information system using LED traffic lights
,”
IEEE Trans. Intel. Transp. Syst.
2
,
197
203
(
2001
).
9.
T.
Komine
and
M.
Nakagawa
, “
Fundamental analysis for visible-light communication system using LED lights
,”
IEEE Trans. Consum. Electron.
50
,
100
107
(
2004
).
10.
H.
Haas
,
L.
Yin
,
Y.
Wang
, and
C.
Chen
, “
What is LiFi?
,”
J. Lightwave Technol.
34
,
1533
1544
(
2015
).
11.
C.
Lee
,
C.
Shen
,
H. M.
Oubei
,
M.
Cantore
,
B.
Janjua
,
T. K.
Ng
 et al, “
2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system
,”
Opt. Express
23
,
29779
29787
(
2015
).
12.
C.
Lee
,
C.
Zhang
,
D. L.
Becerra
,
S.
Lee
,
C. A.
Forman
,
S. H.
Oh
 et al, “
Dynamic characteristics of 410 nm semipolar (20 2 1) III-nitride laser diodes with a modulation bandwidth of over 5 GHz
,”
Appl. Phys. Lett.
109
,
101104
(
2016
).
13.
B.
Xue
,
Z.
Liu
,
J.
Yang
,
L.
Feng
,
N.
Zhang
,
J.
Wang
 et al, “
Characteristics of III-nitride based laser diode employed for short range underwater wireless optical communications
,”
Opt. Commun.
410
,
525
530
(
2018
).
14.
M. H. M.
Shamim
,
M. A.
Shemis
,
C.
Shen
,
H. M.
Oubei
,
T. K.
Ng
,
B. S.
Ooi
 et al, “
Investigation of self-injection locked visible laser diodes for high bit-rate visible light communication
,”
IEEE Photonics J.
10
,
1
11
(
2018
).
15.
J. A.
Holguin-Lerma
,
M.
Kong
,
O.
Alkhazragi
,
X.
Sun
,
T. K.
Ng
, and
B. S.
Ooi
, “
480-nm distributed-feedback InGaN laser diode for 10.5-Gbit/s visible-light communication
,”
Opt. Lett.
45
,
742
745
(
2020
).
16.
C.-Y.
Su
,
Y.-C.
Wu
,
C.-H.
Cheng
,
W.-C.
Wang
,
H.-Y.
Wang
,
L.-Y.
Chen
 et al, “
Color-converting violet laser diode with an ultrafast BEHP-PPV+ MEH-PPV polymer blend for high-speed white lighting data link
,”
ACS Appl. Electron. Mater.
2
,
3017
3027
(
2020
).
17.
C.
Shen
,
C.
Lee
,
T. K.
Ng
,
S.
Nakamura
,
J. S.
Speck
,
S. P.
DenBaars
 et al, “
High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth
,”
Opt. Express
24
,
20281
20286
(
2016
).
18.
A. A.
Alatawi
,
J. A.
Holguin-Lerma
,
C. H.
Kang
,
C.
Shen
,
R. C.
Subedi
,
A. M.
Albadri
 et al, “
High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication
,”
Opt. Express
26
,
26355
26364
(
2018
).
19.
F.
Hu
,
J. A.
Holguin-Lerma
,
Y.
Mao
,
C.
Shen
,
X.
Sun
,
M.
Kong
 et al,
Proc. SPIE
11307
,
113070H
(
2020
).
20.
F.
Kopp
,
C.
Eichler
,
A.
Lell
,
S.
Tautz
,
J.
Ristić
,
B.
Stojetz
 et al, “
Blue superluminescent light-emitting diodes with output power above 100 mW for picoprojection
,”
Jpn. J. Appl. Phys.
52
,
08JH07
(
2013
).
21.
A.
Ali
,
R.
Tehseen
,
K.
Mithilesh
,
C.
Zhang
,
S.
Hassnain
,
X.
Chen
 et al, “
Blue-laser-diode–based high CRI lighting and high-speed visible light communication using narrowband Green-/red-emitting composite phosphor film
,”
Appl. Opt.
59
,
5197
5204
(
2020
).
22.
C.
Shen
,
T. K.
Ng
,
J. T.
Leonard
,
A.
Pourhashemi
,
S.
Nakamura
,
S. P.
DenBaars
 et al, “
High-brightness semipolar (2021) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications
,”
Opt. Lett.
41
,
2608
2611
(
2016
).
23.
A.
Rashidi
,
A. K.
Rishinaramangalam
,
A. A.
Aragon
,
S.
Mishkat-Ul-Masabih
,
M.
Monavarian
,
C.
Lee
 et al, “
High-speed nonpolar InGaN/GaN superluminescent diode with 2.5 GHz modulation bandwidth
,”
IEEE Photonics Technol. Lett.
32
,
383
386
(
2020
).
24.
J. A.
Tatum
,
Proc. SPIE
9001
,
90010C
(
2014
).
25.
C.-H.
Yeh
,
Y.-C.
Yang
,
C.-W.
Chow
,
Y.-W.
Chen
, and
T.-A.
Hsu
, “
VCSEL and LED based visible light communication system by applying decode-and-forward relay transmission
,”
J. Lightwave Technol.
38
,
5728
5732
(
2020
).
26.
S.
Demiguel
,
N.
Li
,
X.
Li
,
X.
Zheng
,
J.
Kim
,
J. C.
Campbell
 et al, “
Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications
,”
IEEE Photonics Technol. Lett.
15
,
1761
1763
(
2003
).
27.
C.
Shen
,
J. T.
Leonard
,
E. C.
Young
,
T. K.
Ng
,
S. P.
DenBaars
,
J. S.
Speck
 et al, “
GHz modulation bandwidth from single-longitudinal mode violet-blue VCSEL using nonpolar InGaN/GaN QWs
,” in
2016 Conference on Lasers and Electro-Optics (CLEO)
, San Jose, CA, 5–10 June 2016 (IEEE,
2016
), pp.
1
2
.
28.
S.
Radovanovic
,
A.-J.
Annema
, and
B.
Nauta
,
High-Speed Photodiodes in Standard CMOS Technology
(
Springer Science & Business Media
, Dordrecht, Netherlands,
2006
), Vol. 869.
29.
J. J.
Wierer
, Jr
.,
J. Y.
Tsao
, and
D. S.
Sizov
, “
The potential of III-nitride laser diodes for solid-state lighting
,”
Phys. Status Solidi C
11
,
674
677
(
2014
).
30.
J.
Wierer
, Jr.
,
J.
Tsao
, and
D.
Sizov
, “
Comparison between blue lasers and light-emitting diodes for future solid-state lighting
,”
Laser Photonics Rev.
7
,
963
993
(
2013
).
31.
J.
Piprek
, “
Comparative efficiency analysis of GaN-based light-emitting diodes and laser diodes
,”
Appl. Phys. Lett.
109
,
021104
(
2016
).
32.
K.
Kuramoto
,
A.
Ohno
,
T.
Yamada
,
H.
Okagawa
, and
K.
Kawasaki
, “
High-Efficient and high-power GaN-based 405 nm laser diodes
,”
Rev. Laser Eng.-Laser Soc. Jpn.
35
,
69
(
2007
).
33.
J.
Wierer
,
D.
Steigerwald
,
M.
Krames
,
J.
O’shea
,
M.
Ludowise
,
G.
Christenson
 et al, “
High-power AlGaInN flip-chip light-emitting diodes
,”
Appl. Phys. Lett.
78
,
3379
3381
(
2001
).
34.
J. R.
Oh
,
S.-H.
Cho
,
Y.-H.
Lee
, and
Y. R.
Do
, “
Enhanced forward efficiency of Y3Al5O12: Ce3+ phosphor from white light-emitting diodes using blue-pass yellow-reflection filter
,”
Opt. Express
17
,
7450
7457
(
2009
).
35.
H.
Le Minh
,
D.
O'Brien
,
G.
Faulkner
,
L.
Zeng
,
K.
Lee
,
D.
Jung
 et al, “
High-speed visible light communications using multiple-resonant equalization
,”
IEEE Photonics Technol. Lett.
20
,
1243
1245
(
2008
).
36.
G.
Cossu
,
A.
Khalid
,
P.
Choudhury
,
R.
Corsini
, and
E.
Ciaramella
, “
Long distance indoor high speed visible light communication system based on RGB LEDs
,” in
Asia Communications and Photonics Conference
, Guangzhou, China, 7–10 Nov. 2012 (Optica Publishing Group,
2012
), p.
AS3C-2
.
37.
X.
Huang
,
Z.
Wang
,
J.
Shi
,
Y.
Wang
, and
N.
Chi
, “
1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver
,”
Opt. Express
23
,
22034
22042
(
2015
).
38.
G.
Cossu
,
A. M.
Khalid
,
P.
Choudhury
,
R.
Corsini
, and
E.
Ciaramella
, “
2.1 Gbit/s visible optical wireless transmission
,” in
European Conference and Exhibition on Optical Communication
, Amsterdam, Netherlands, 16–20 Sept. 2012 (Optica Publishing Group,
2012
), p.
P4.16
.
39.
N.
Chi
,
M.
Zhang
,
Y.
Zhou
, and
J.
Zhao
, “
3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted manchester coding
,”
Opt. Express
24
,
21663
21673
(
2016
).
40.
Y.
Wang
,
X.
Huang
,
L.
Tao
,
J.
Shi
, and
N.
Chi
, “
4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization
,”
Opt. Express
23
,
13626
13633
(
2015
).
41.
G.
Cossu
,
W.
Ali
,
R.
Corsini
, and
E.
Ciaramella
, “
Gigabit-class optical wireless communication system at indoor distances (1.5–4m)
,”
Opt. Express
23
,
15700
15705
(
2015
).
42.
C.
Lee
,
C.
Zhang
,
M.
Cantore
,
R. M.
Farrell
,
S. H.
Oh
,
T.
Margalith
 et al, “
4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication
,”
Opt. Express
23
,
16232
16237
(
2015
).
43.
B.
Janjua
,
H. M.
Oubei
,
J. R. D.
Retamal
,
T. K.
Ng
,
C.-T.
Tsai
,
H.-Y.
Wang
 et al, “
Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication
,”
Opt. Express
23
,
18746
18753
(
2015
).
44.
D.
Tsonev
,
S.
Videv
, and
H.
Haas
, “
Towards a 100 Gb/s visible light wireless access network
,”
Opt. Express
23
,
1627
1637
(
2015
).
45.
Y.-C.
Chi
,
D.-H.
Hsieh
,
C.-T.
Tsai
,
H.-Y.
Chen
,
H.-C.
Kuo
, and
G.-R.
Lin
, “
450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM
,”
Opt. Express
23
,
13051
13059
(
2015
).
46.
C.
Shen
,
Y.
Guo
,
X.
Sun
,
G.
Liu
,
K.-T.
Ho
,
T. K.
Ng
 et al, “
Going beyond 10-meter, Gbit/s underwater optical wireless communication links based on visible lasers
,” in
2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC)
, Singapore, 31 Jul. 2017–4 Aug. 2017 (IEEE,
2017
), pp.
1
3
.
47.
T.-C.
Wu
,
Y.-C.
Chi
,
H.-Y.
Wang
,
C.-T.
Tsai
,
C.-H.
Cheng
,
J.-K.
Chang
 et al, “
White-lighting communication with a Lu3Al5O12:Ce3+/CaAlSiN 3:Eu2+ glass covered 450-nm InGaN laser diode
,”
J. Lightwave Technol.
36
,
1634
1643
(
2018
).
48.
Y.-F.
Huang
,
C.-T.
Tsai
,
H.-Y.
Kao
,
Y.-C.
Chi
,
H.-Y.
Wang
,
T.-T.
Shih
 et al, “
17.6-Gbps universal filtered multi-carrier encoding of GaN blue LD for visible light communication
,” in
2017 Conference on Lasers and Electro-Optics (CLEO)
, San Jose, CA, 14–19 May 2017 (IEEE,
2017
), pp.
1
2
.
49.
J.
Vucic
,
C.
Kottke
,
S.
Nerreter
,
K.
Habel
,
A.
Buttner
,
K.-D.
Langer
 et al, “
125 Mbit/s over 5m wireless distance by use of OOK-modulated phosphorescent white LEDs
,” in
2009 35th European Conference on Optical Communication
, Vienna, Austria, 20–24 Sept. 2009 (IEEE,
2009
), pp.
1
2
.
50.
J.
Vučić
,
C.
Kottke
,
S.
Nerreter
,
K.
Habel
,
A.
Büttner
,
K.-D.
Langer
 et al, “
230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs
,” in
2010 Conference on Optical Fiber Communication (OFC/NFOEC), Collocated National Fiber Optic Engineers Conference
, San Diego, CA, 21–25 Mar. 2010 (IEEE,
2010
), pp.
1
3
.
51.
N.
Fujimoto
and
H.
Mochizuki
, “
477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical led driver with a pre-emphasis circuit
,” in
National Fiber Optic Engineers Conference
, Anaheim, CA, 17–21 Mar. 2013 (Optica Publishing Group,
2013
), p.
JTh2A-73
.
52.
N.
Fujimoto
and
H.
Mochizuki
, “
614 Mbit/s OOK-based transmission by the duobinary technique using a single commercially available visible LED for high-speed visible light communications
,” in
2012 38th European Conference and Exhibition on Optical Communications
, Amsterdam, Netherlands, 16–20 Sept. 2012 (IEEE,
2012
), pp.
1
3
.
53.
P. A.
Haigh
,
Z.
Ghassemlooy
,
S.
Rajbhandari
, and
I.
Papakonstantinou
, “
Visible light communications using organic light emitting diodes
,”
IEEE Commun. Mag.
51
,
148
154
(
2013
).
54.
S.
Zhang
,
S.
Watson
,
J. J.
McKendry
,
D.
Massoubre
,
A.
Cogman
,
E.
Gu
 et al, “
1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs
,”
J. Lightwave Technol.
31
,
1211
1216
(
2013
).
55.
C.-H.
Yeh
,
C.-W.
Chow
, and
L.-Y.
Wei
, “
1250 mbit/s OOK wireless white-light VLC transmission based on phosphor laser diode
,”
IEEE Photonics J.
11
,
1
5
(
2019
).
56.
H.
Ahmad
,
S. M. T.
Gillani
,
T.
Omer
,
T.
Hassan
,
S.
Aslam
, and
S. U.
Ali
, “
Futuristic short range optical communication: A survey
,” in
2020 International Conference on Information Science and Communication Technology (ICISCT)
, Karachi, Pakistan, 8–9 Feb. 2020 (IEEE,
2020
), pp.
1
4
.
57.
F.-M.
Wu
,
C.-T.
Lin
,
C.-C.
Wei
,
C.-W.
Chen
,
Z.-Y.
Chen
, and
H.-T.
Huang
, “
3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation
,” in
2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC)
, Anaheim, CA, 17–21 Mar. 2013 (IEEE,
2013
), pp.
1
3
.
58.
R.
Rodes
,
M.
Wieckowski
,
T. T.
Pham
,
J. B.
Jensen
,
J.
Turkiewicz
,
J.
Siuzdak
 et al, “
Carrierless amplitude phase modulation of VCSEL with 4 bit/s/Hz spectral efficiency for use in WDM-PON
,”
Opt. Express
19
,
26551
26556
(
2011
).
59.
Z.
Chen
and
H.
Haas
, “
Space division multiple access in visible light communications
,” in
2015 IEEE International Conference on Communications (ICC)
, UK, 8–12 June 2015 (IEEE,
2015
), pp.
5115
5119
.
60.
J.
Reményi
,
P.
Várhegyi
,
L.
Domján
,
P.
Koppa
, and
E.
Lõrincz
, “
Amplitude, phase, and hybrid ternary modulation modes of a twisted-nematic liquid-crystal display at ∼400 nm
,”
Appl. Opt.
42
,
3428
3434
(
2003
).
61.
A.
Benjebbour
,
Y.
Saito
,
Y.
Kishiyama
,
A.
Li
,
A.
Harada
, and
T.
Nakamura
, “
Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access
,” in
2013 International Symposium on Intelligent Signal Processing and Communication Systems
, Naha, Japan, 12–15 Nov. 2013 (IEEE,
2013
), pp.
770
774
.
62.
Z.
Ding
,
X.
Lei
,
G. K.
Karagiannidis
,
R.
Schober
,
J.
Yuan
, and
V. K.
Bhargava
, “
A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends
,”
IEEE J. Sel. Areas Commun.
35
,
2181
2195
(
2017
).
63.
H.
Marshoud
,
V. M.
Kapinas
,
G. K.
Karagiannidis
, and
S.
Muhaidat
, “
Non-orthogonal multiple access for visible light communications
,”
IEEE Photonics Technol. Lett.
28
,
51
54
(
2015
).
64.
R. C.
Kizilirmak
,
C. R.
Rowell
, and
M.
Uysal
, “
Non-orthogonal multiple access (NOMA) for indoor visible light communications
,” in
2015 4th International Workshop on Optical Wireless Communications (IWOW)
, Istanbul, Turkey, 7–8 Sept. 2015 (IEEE,
2015
), pp.
98
101
.
65.
C.
Chen
,
W.-D.
Zhong
,
H.
Yang
, and
P.
Du
, “
On the performance of MIMO-NOMA-based visible light communication systems
,”
IEEE Photonics Technol. Lett.
30
,
307
310
(
2017
).
66.
X.
Zhang
,
Q.
Gao
,
C.
Gong
, and
Z.
Xu
, “
User grouping and power allocation for NOMA visible light communication multi-cell networks
,”
IEEE Commun. Lett.
21
,
777
780
(
2016
).
67.
Y.
Liu
,
Z.
Qin
,
M.
Elkashlan
,
Z.
Ding
,
A.
Nallanathan
, and
L.
Hanzo
, “
Non-orthogonal multiple access for 5G and beyond
,”
Proc. IEEE
105
,
2347
2381
(
2017
).
68.
L.
Yin
,
W. O.
Popoola
,
X.
Wu
, and
H.
Haas
, “
Performance evaluation of non-orthogonal multiple access in visible light communication
,”
IEEE Trans. Commun.
64
,
5162
5175
(
2016
).
69.
S.
Rajbhandari
,
J. J.
McKendry
,
J.
Herrnsdorf
,
H.
Chun
,
G.
Faulkner
,
H.
Haas
 et al, “
A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications
,”
Semicond. Sci. Technol.
32
,
023001
(
2017
).
70.
L. E. M.
Matheus
,
A. B.
Vieira
,
L. F.
Vieira
,
M. A.
Vieira
, and
O.
Gnawali
, “
Visible light communication: Concepts, applications and challenges
,”
IEEE Commun. Surv. Tutor.
21
,
3204
3237
(
2019
).
71.
D.
Karunatilaka
,
F.
Zafar
,
V.
Kalavally
, and
R.
Parthiban
, “
LED based indoor visible light communications: State of the art
,”
IEEE Commun. Surv. Tutor.
17
,
1649
1678
(
2015
).
72.
F.
Hu
,
G.
Li
,
P.
Zou
,
J.
Hu
,
S.
Chen
,
Q.
Liu
 et al, “
20.09-Gbit/s underwater WDM-VLC transmission based on a single Si/GaAs-substrate multichromatic LED array chip
,” in
2020 Optical Fiber Communications Conference and Exhibition (OFC)
, San Diego, CA, 8–12 Mar. 2020 (IEEE,
2020
), pp.
1
3
.
73.
L.
Zhang
,
Z.
Wang
,
Z.
Wei
,
C.
Chen
,
G.
Wei
,
H.
Fu
 et al, “
Towards a 20 Gbps multi-user bubble turbulent NOMA UOWC system with green and blue polarization multiplexing
,”
Opt. Express
28
,
31796
31807
(
2020
).
74.
R.
Bian
,
I.
Tavakkolnia
, and
H.
Haas
, “
15.73 gb/s visible light communication with off-the-shelf LEDs
,”
J. Lightwave Technol.
37
,
2418
2424
(
2019
).
75.
Y.
Zhou
,
Y.
Wei
,
F.
Hu
,
J.
Hu
,
Y.
Zhao
,
J.
Zhang
 et al, “
Comparison of nonlinear equalizers for high-speed visible light communication utilizing silicon substrate phosphorescent white LED
,”
Opt. Express
28
,
2302
2316
(
2020
).
76.
M. S.
Islim
,
R. X.
Ferreira
,
X.
He
,
E.
Xie
,
S.
Videv
,
S.
Viola
 et al, “
Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED
,”
Photonics Res.
5
,
A35
A43
(
2017
).
77.
C.
Wang
,
G.
Li
,
Y.
Ha
,
S.
Han
, and
N.
Chi
, “
A 2.5 Gb/s real-time visible-light communication system based on phosphorescent white LED
,” in
2019 7th International Conference on Information, Communication and Networks (ICICN)
, Macao, China, 24–26 Apr. 2019 (IEEE,
2019
), pp.
140
145
.
78.
E.
Zedini
,
H. M.
Oubei
,
A.
Kammoun
,
M.
Hamdi
,
B. S.
Ooi
, and
M.-S.
Alouini
, “
Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems
,”
IEEE Trans. Commun.
67
,
2893
2907
(
2019
).
79.
G. A.
Mapunda
,
R.
Ramogomana
,
L.
Marata
,
B.
Basutli
,
A. S.
Khan
, and
J. M.
Chuma
, “
Indoor visible light communication: A tutorial and survey
,”
Wirel. Commun. Mob. Comput.
2020
(
2020
).
80.
K. D.
Dambul
,
D. C.
O'Brien
, and
G.
Faulkner
, “
Indoor optical wireless MIMO system with an imaging receiver
,”
IEEE Photonics Technol. Lett.
23
,
97
99
(
2010
).
81.
A. H.
Azhar
,
T.-A.
Tran
, and
D.
O'Brien
, “
Demonstration of high-speed data transmission using MIMO-OFDM visible light communications
,” in
2010 IEEE Globecom Workshops
, Miami, FL, 6–10 Dec. 2010 (IEEE,
2010
), pp.
1052
1056
.
82.
A. H.
Azhar
,
T.-A.
Tran
, and
D.
O'Brien
, “
A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications
,”
IEEE Photonics Technol. Lett.
25
,
171
174
(
2012
).
83.
A.
Burton
,
H.
Le Minh
,
Z.
Ghassemlooy
,
E.
Bentley
, and
C.
Botella
, “
Experimental demonstration of 50-Mb/s visible light communications using 4×4 MIMO
,”
IEEE Photonics Technol. Lett.
26
,
945
948
(
2014
).
84.
C. B.
Liu
,
B.
Sadeghi
, and
E. W.
Knightly
, “
Enabling vehicular visible light communication (V2LC) networks
,” in
Proceedings of the Eighth ACM International Workshop on Vehicular Inter-Networking
, Las Vegas, NV, 19–23 Sept. 2011 (Association for Computing Machinery, New York, NY,
2011
) pp.
41
50
.
85.
D.-R.
Kim
,
S.-H.
Yang
,
H.-S.
Kim
,
Y.-H.
Son
, and
S.-K.
Han
, “
Outdoor visible light communication for inter-vehicle communication using controller area network
,” in
2012 Fourth International Conference on Communications and Electronics (ICCE)
, Hue, Vietnam, 1–3 Aug. 2012 (IEEE,
2012
), pp.
31
34
.
86.
P.
Luo
,
Z.
Ghassemlooy
,
H.
Le Minh
,
E.
Bentley
,
A.
Burton
, and
X.
Tang
, “
Fundamental analysis of a car to car visible light communication system
,” in
2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP)
, Manchester, UK, 23–25 July 2014 (IEEE,
2014
), pp.
1011
1016
.
87.
S.
Okada
,
T.
Yendo
,
T.
Yamazato
,
T.
Fujii
,
M.
Tanimoto
, and
Y.
Kimura
, “
On-vehicle receiver for distant visible light road-to-vehicle communication
,” in
2009 IEEE Intelligent Vehicles Symposium
, Xi'an, China, 3–5 June 2009 (IEEE,
2009
), pp.
1033
1038
.
88.
I.
Takai
,
S.
Ito
,
K.
Yasutomi
,
K.
Kagawa
,
M.
Andoh
, and
S.
Kawahito
, “
LED and CMOS image sensor based optical wireless communication system for automotive applications
,”
IEEE Photonics J.
5
,
6801418
(
2013
).
89.
I.
Takai
,
T.
Harada
,
M.
Andoh
,
K.
Yasutomi
,
K.
Kagawa
, and
S.
Kawahito
, “
Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver
,”
IEEE Photonics J.
6
,
1
14
(
2014
).
90.
J.
Rodríguez
,
D. G.
Lamar
,
P. F.
Miaja
, and
J.
Sebastián
, “
Reproducing single-carrier digital modulation schemes for VLC by controlling the first switching harmonic of the DC–DC power converter output voltage ripple
,”
IEEE Trans. Power Electron.
33
,
7994
8010
(
2017
).
91.
J.
Rodríguez
,
D. G.
Lamar
,
P. F.
Miaja
,
D. G.
Aller
, and
J.
Sebastián
, “
Power-efficient VLC transmitter based on pulse-width modulated DC–DC converters and the split of the power
,”
IEEE Trans. Power Electron.
34
,
1726
1743
(
2018
).
92.
J.
Sebastián
,
D. G.
Lamar
,
D. G.
Aller
,
J.
Rodríguez
, and
P. F.
Miaja
, “
On the role of power electronics in visible light communication
,”
IEEE J. Emerg. Sel. Top. Power Electron.
6
,
1210
1223
(
2018
).
93.
J.
Rodríguez
,
D. G.
Lamar
,
D. G.
Aller
,
P. F.
Miaja
, and
J.
Sebastián
, “
Efficient visible light communication transmitters based on switching-mode dc-dc converters
,”
Sensors
18
,
1127
(
2018
).
94.
J. R.
Mendez
,
D. G.
Lamar
,
D. G.
Aller
,
P. F.
Miaja
, and
J.
Sebastián
, “
Reproducing multicarrier modulation schemes for visible light communication with the ripple modulation technique
,”
IEEE Trans. Ind. Electron.
67
,
1532
1543
(
2019
).
95.
F.
Loose
,
L.
Teixeira
,
R. R.
Duarte
,
M. A.
Dalla Costa
, and
C. H.
Barriquello
, “
On the use of the intrinsic ripple of a buck converter for visible light communication in LED drivers
,”
IEEE J. Emerg. Sel. Top. Power Electron.
6
,
1235
1245
(
2018
).
96.
D. G.
Aller
,
D. G.
Lamar
,
P. F.
Miaja
,
J.
Rodríguez
, and
J.
Sebastián
, “
Taking advantage of the sum of the light in outphasing technique for visible light communication transmitter
,”
IEEE J. Emerg. Sel. Top. Power Electron.
9
,
138
145
(
2021
).
97.
R. X.
Ferreira
,
E.
Xie
,
J. J.
McKendry
,
S.
Rajbhandari
,
H.
Chun
,
G.
Faulkner
 et al, “
High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications
,”
IEEE Photonics Technol. Lett.
28
,
2023
2026
(
2016
).
98.
J.
Carreira
,
E.
Xie
,
J.
McKendry
,
B.
Guilhabert
,
I.
Watson
,
E.
Gu
 et al, “
Dual-color micro-LED transmitter for visible light communication
,” in
2018 IEEE Photonics Conference (IPC)
, Reston, VA, 30 Sept.–4 Oct. 2018 (IEEE,
2018
), pp.
1
2
.
99.
J. F.
Carreira
,
G. N.
Arvanitakis
,
A. D.
Griffiths
,
J. J.
McKendry
,
E.
Xie
,
J.
Kosman
 et al, “
Underwater wireless optical communications at 100 Mb/s using integrated dual-color micro-LEDs
,” in
2019 IEEE Photonics Conference (IPC)
, San Antonio, TX, 29 Sept.–3 Oct. 2019 (IEEE,
2019
), pp.
1
2
.
100.
C.-W.
Hsu
,
C.-W.
Chow
,
I.-C.
Lu
,
Y.-L.
Liu
,
C.-H.
Yeh
, and
Y.
Liu
, “
High speed imaging 3×3 MIMO phosphor white-light LED based visible light communication system
,”
IEEE Photonics J.
8
,
1
6
(
2016
).
101.
G.
Cossu
,
A.
Khalid
,
P.
Choudhury
,
R.
Corsini
, and
E.
Ciaramella
, “
3.4 Gbit/s visible optical wireless transmission based on RGB LED
,”
Opt. Express
20
,
B501
B506
(
2012
).
102.
I.-C.
Lu
,
C.-H.
Lai
,
C.-H.
Yeh
, and
J.
Chen
, “
6.36 Gbit/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation
,” in
Optical Fiber Communication Conference
, Los Angeles, CA, 19–23 Mar. 2017 (Optica Publishing Group,
2017
), p.
W2A-39
.
103.
D.
Tsonev
,
H.
Chun
,
S.
Rajbhandari
,
J. J.
McKendry
,
S.
Videv
,
E.
Gu
 et al, “
A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED
,”
IEEE Photonics Technol. Lett.
26
,
637
640
(
2014
).
104.
X.
He
,
E.
Xie
,
M. S.
Islim
,
A. A.
Purwita
,
J. J.
McKendry
,
E.
Gu
 et al, “
1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm
,”
Photonics Res.
7
,
B41
B47
(
2019
).
105.
S.-W. H.
Chen
,
Y.-M.
Huang
,
Y.-H.
Chang
,
Y.
Lin
,
F.-J.
Liou
,
Y.-C.
Hsu
 et al, “
High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication
,”
ACS Photonics
7
,
2228
2235
(
2020
).
106.
S.
Watson
,
M.
Tan
,
S. P.
Najda
,
P.
Perlin
,
M.
Leszczynski
,
G.
Targowski
 et al, “
Visible light communications using a directly modulated 422 nm GaN laser diode
,”
Opt. Lett.
38
,
3792
3794
(
2013
).
107.
C.-H.
Chang
,
C.-Y.
Li
,
H.-H.
Lu
,
C.-Y.
Lin
,
J.-H.
Chen
,
Z.-W.
Wan
 et al, “
A 100-Gb/s multiple-input multiple-output visible laser light communication system
,”
J. Lightwave Technol.
32
,
4121
4127
(
2014
).
108.
Y.-F.
Huang
,
Y.-C.
Chi
,
H.-Y.
Kao
,
C.-T.
Tsai
,
H.-Y.
Wang
,
H.-C.
Kuo
 et al, “
Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m
,”
Sci. Rep.
7
,
10478
(
2017
).
109.
W.-C.
Wang
,
H.-Y.
Wang
, and
G.-R.
Lin
, “
Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s
,”
Sci. Rep.
8
,
13142
(
2018
).
110.
I.-C.
Lu
,
C.-H.
Yeh
,
D.-Z.
Hsu
, and
C.-W.
Chow
, “
Utilization of 1-GHz VCSEL for 11.1-gbps OFDM VLC wireless communication
,”
IEEE Photonics J.
8
,
1
6
(
2016
).
111.
C.-H.
Yeh
,
L.-Y.
Wei
, and
C.-W.
Chow
, “
Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications
,”
Sci. Rep.
7
,
15846
(
2017
).
112.
L.-Y.
Wei
,
C.-W.
Chow
,
C.-W.
Hsu
, and
C.-H.
Yeh
, “
Bidirectional visible light communication system using a single VCSEL with predistortion to enhance the upstream remodulation
,”
IEEE Photonics J.
10
,
1
7
(
2018
).
113.
J. R. D.
Retamal
,
H. M.
Oubei
,
B.
Janjua
,
Y.-C.
Chi
,
H.-Y.
Wang
,
C.-T.
Tsai
 et al, “
4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode
,”
Opt. Express
23
,
33656
33666
(
2015
).
114.
C.
Lee
,
C.
Shen
,
C.
Cozzan
,
R. M.
Farrell
,
J. S.
Speck
,
S.
Nakamura
 et al, “
Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors
,”
Opt. Express
25
,
17480
17487
(
2017
).
115.
L.-Y.
Wei
,
C.-W.
Chow
,
Y.
Liu
, and
C.-H.
Yeh
, “
Multi-Gbit/s phosphor-based white-light and blue-filter-free visible light communication and lighting system with practical transmission distance
,”
Opt. Express
28
,
7375
7381
(
2020
).
116.
Y.-C.
Chi
,
D.-H.
Hsieh
,
C.-Y.
Lin
,
H.-Y.
Chen
,
C.-Y.
Huang
,
J.-H.
He
 et al, “
Phosphorous diffuser diverged blue laser diode for indoor lighting and communication
,”
Sci. Rep.
5
,
18690
(
2015
).
117.
T.-C.
Wu
,
Y.-C.
Chi
,
H.-Y.
Wang
,
C.-T.
Tsai
,
Y.-F.
Huang
, and
G.-R.
Lin
, “
Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s
,”
Sci. Rep.
7
,
11
(
2017
).
118.
L.-Y.
Wei
,
Y.
Liu
,
C.-W.
Chow
,
G.-H.
Chen
,
C.-W.
Peng
,
P.-C.
Guo
 et al, “
6.915-Gbit/s white-light phosphor laser diode-based DCO-OFDM visible light communication (VLC) system with functional transmission distance
,”
Electron. Lett.
56
,
945
947
(
2020
).
119.
L.-Y.
Wei
,
C.-W.
Hsu
,
C.-W.
Chow
, and
C.-H.
Yeh
, “
20.231 Gbit/s tricolor red/Green/blue laser diode based bidirectional signal remodulation visible-light communication system
,”
Photonics Res.
6
,
422
426
(
2018
).
120.
C.-W.
Chow
,
Y.-H.
Chang
,
L.-Y.
Wei
,
C.-H.
Yeh
, and
Y.
Liu
, “
26.228-Gbit/s RGBV visible light communication (VLC) with 2-m free space transmission
,” in
2020 Opto-Electronics and Communications Conference (OECC)
, Taipei, Taiwan, 4–8 Oct. 2020 (IEEE,
2020
), pp.
1
3
.
121.
X.
Liu
,
R.
Lin
,
H.
Chen
,
S.
Zhang
,
Z.
Qian
,
G.
Zhou
 et al, “
High-bandwidth InGaN self-powered detector arrays toward MIMO visible light communication based on micro-LED arrays
,”
ACS Photonics
6
,
3186
3195
(
2019
).
122.
K.-T.
Ho
,
R.
Chen
,
G.
Liu
,
C.
Shen
,
J.
Holguin-Lerma
,
A. A.
Al-Saggaf
 et al, “
3.2 gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector
,”
Opt. Express
26
,
3037
3045
(
2018
).
123.
C. H.
Kang
,
G.
Liu
,
C.
Lee
,
O.
Alkhazragi
,
J. M.
Wagstaff
,
K.-H.
Li
 et al, “
Semipolar (2021¯) InGaN/GaN micro-photodetector for gigabit-per-second visible light communication
,”
Appl. Phys. Express
13
,
014001
(
2019
).
124.
O.
Alkhazragi
,
C. H.
Kang
,
M.
Kong
,
G.
Liu
,
C.
Lee
,
K.-H.
Li
 et al, “
7.4-Gbit/s Visible-Light communication utilizing wavelength-selective semipolar micro-photodetector
,”
IEEE Photonics Technol. Lett.
32
,
767
770
(
2020
).
125.
J.
Carrano
,
T.
Li
,
D.
Brown
,
P.
Grudowski
,
C.
Eiting
,
R.
Dupuis
 et al, “
Very high-speed metal-semiconductor-metal ultraviolet photodetectors fabricated on GaN
,”
Appl. Phys. Lett.
73
,
2405
2407
(
1998
).
126.
J.
Carrano
,
T.
Li
,
C.
Eiting
,
R.
Dupuis
, and
J.
Campbell
, “
Very high-speed ultraviolet photodetectors fabricated on GaN
,”
J. Electron. Mater.
28
,
325
333
(
1999
).
127.
G.
Xu
,
A.
Salvador
,
W.
Kim
,
Z.
Fan
,
C.
Lu
,
H.
Tang
 et al, “
High speed, low noise ultraviolet photodetectors based on GaN pin and AlGaN (p)-GaN (i)-GaN (n) structures
,”
Appl. Phys. Lett.
71
,
2154
2156
(
1997
).
128.
B.
Butun
,
T.
Tut
,
E.
Ulker
,
T.
Yelboga
, and
E.
Ozbay
, “
High-performance visible-blind GaN-based p-i-n photodetectors
,”
Appl. Phys. Lett.
92
,
033507
(
2008
).
129.
J.
Pereiro
,
C.
Rivera
,
Á
Navarro
,
E.
Muñoz
,
R.
Czernecki
,
S.
Grzanka
 et al, “
Optimization of InGaN–GaN MQW photodetector structures for high-responsivity performance
,”
IEEE J. Quantum Electron.
45
,
617
622
(
2009
).
130.
B.
Alshehri
,
K.
Dogheche
,
S.
Belahsene
,
A.
Ramdane
,
G.
Patriarche
,
D.
Decoster
 et al, “
Dynamic characterization of III-nitride-based high-speed photodiodes
,”
IEEE Photonics J.
9
,
1
7
(
2017
).
131.
A. T.
Hussein
and
J. M.
Elmirghani
, “
10 Gbps mobile visible light communication system employing angle diversity, imaging receivers, and relay nodes
,”
J. Opt. Commun. Netw.
7
,
718
735
(
2015
).
132.
C.
Shen
,
C.
Lee
,
E.
Stegenburgs
,
J. H.
Lerma
,
T. K.
Ng
,
S.
Nakamura
 et al, “
Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system
,”
Appl. Phys. Express
10
,
042201
(
2017
).
133.
C.
Shen
,
Y.
Guo
,
H. M.
Oubei
,
T. K.
Ng
,
G.
Liu
,
K.-H.
Park
 et al, “
20-meter underwater wireless optical communication link with 1.5 Gbps data rate
,”
Opt. Express
24
,
25502
25509
(
2016
).
134.
Y.-L.
Gao
,
Z.-Y.
Wu
,
Z.-K.
Wang
, and
J.
Wang
, “
A 1.34-Gb/s real-time Li-Fi transceiver with DFT-spread-based PAPR mitigation
,”
IEEE Photonics Technol. Lett.
30
,
1447
1450
(
2018
).
135.
Y.-C.
Chi
,
Y.-F.
Huang
,
T.-C.
Wu
,
C.-T.
Tsai
,
L.-Y.
Chen
,
H.-C.
Kuo
 et al, “
Violet laser diode enables lighting communication
,”
Sci. Rep.
7
,
10469
(
2017
).
136.
A. T.
Hussein
and
J. M.
Elmirghani
, “
Mobile multi-gigabit visible light communication system in realistic indoor environment
,”
J. Lightwave Technol.
33
,
3293
3307
(
2015
).
137.
Z.
Ghassemlooy
,
P. A.
Haigh
,
F.
Arca
,
S. F.
Tedde
,
O.
Hayden
,
I.
Papakonstantinou
 et al, “
Visible light communications: 3.75 Mbits/s data rate with a 160 kHz bandwidth organic photodetector and artificial neural network equalization
,”
Photonics Res.
1
,
65
68
(
2013
).
138.
C. J.
Humphreys
, “
Solid-state lighting
,”
MRS Bull.
33
,
459
470
(
2008
).
139.
W.
Wu
,
Q.
Shen
,
M.
Wang
, and
X.
Shen
, “
Performance analysis of IEEE 802.11.ad downlink hybrid beamforming
,” in
2017 IEEE International Conference on Communications (ICC)
, Paris, France, 21–25 May 2017 (IEEE,
2017
), pp.
1
6
.
140.
Q.-H.
Dang
and
M.
Yoo
, “
Handover procedure and algorithm in vehicle to infrastructure visible light communication
,”
IEEE Access
5
,
26466
26475
(
2017
).
You do not currently have access to this content.