Thermoplastic polymers such as polyamide 12 (PA12) are of great interest for functional coatings in industry due to their good material properties (e.g., chemical and wear resistance and biocompatibility). In order to provide a high local selectivity of polymer deposition and to shorten the process chain, a laser-based coating process represents a promising approach for generating functional coatings. In this work, a laser-based coating process for PA12 powder on stainless steel substrates is investigated experimentally by using a thulium-doped fiber laser with a wavelength of 1.94 μm. Due to the higher inherent absorption of the laser radiation in the powder material, a thulium-doped fiber laser is more appropriate for processing PA12 powder in comparison to more common near-infrared laser beam sources with wavelengths around 1 μm. The influence of the main process parameters (laser power, scanning speed, hatch distance, and substrate temperature) on the resulting coatings was evaluated. For this purpose, optical microscopic analyses were performed to characterize the coating surfaces and cross sections in terms of possible defects. In order to assess the adhesion between the coating and the substrate, cross-cutting values were determined. On the basis of the quality characteristics regarding the coating surface, a process window was determined to produce a closed melting film, which fully covers the metallic substrate. By an adjustment of the scanning speed (5 mm/s) and line overlap (50%/62.5%), a broadening of the process window could be achieved. An additional substrate heating (T ≥ 90°C) is an appropriate strategy, which enlarges the size of the process window significantly. Optical microscopy analyses and cross-cutting tests verified the suitability of a thulium-doped fiber laser for processing dense PA12 coatings with an adequate adhesion to the stainless steel substrate. The substrate temperature is a decisive process parameter to obtain a homogeneous morphology and to further improve the adhesion between the metallic substrate and PA12 layer.

1.
G. W.
Ehrenstein
,
Polymer-Werkstoffe: Struktur - Eigenschaften - Anwendung
, 3rd ed. (
Hanser
,
München
,
2011
).
2.
P.
Elsner
,
P.
Eyerer
, and
T.
Hirth
,
Kunststoffe: Eigenschaften und Anwendungen
, 8th ed. (
Springer
,
Berlin
,
2012
).
3.
E.
Spyrou
,
Powder Coatings Chemistry and Technology: 3rd Revised Edition
(
Vincentz Network
,
Hannover
,
2014
).
4.
H.
Sändker
,
J.
Stollenwerk
, and
P.
Loosen
, “
Laser-based process for polymeric tribological coatings on lightweight components
,”
Surf. Coat. Technol.
332
,
391
398
(
2017
).
5.
H.
Sändker
, “
Laser-based production of functional coatings made from particulate polyetheretherketone
,”
Ph.D. thesis
,
RWTH Aachen University
,
2019
.
6.
J.
Li
,
H.
Liao
, and
C.
Coddet
, “
Friction and wear behavior of flame-sprayed PEEK coatings
,”
Wear
252
,
824
831
(
2002
).
7.
C.
Zhang
,
G.
Zhang
,
V.
JI
,
H.
Liao
,
S.
Costil
, and
C.
Coddet
, “
Microstructure and mechanical properties of flame-sprayed PEEK coating remelted by laser process
,”
Prog. Org. Coat.
66
,
248
253
(
2009
).
8.
A.
Buling
,
H.
Sändker
,
J.
Stollenwerk
,
U.
Krupp
, and
A.
Hamann-Steinmeier
, “
Laser surface pretreatment of 100Cr6 bearing steel—Hardening effects and white etching zones
,”
Appl. Surf. Sci.
378
,
564
571
(
2016
).
9.
I.
Mingareev
,
F.
Weirauch
,
A.
Olowinsky
,
L.
Shah
,
P.
Kadwani
, and
M.
Richardson
, “
Welding of polymers using a 2μm thulium fiber laser
,”
Opt. Laser Technol.
44
,
2095
2099
(
2012
).
10.
M.
Brosda
,
P.
Nguyen
,
A.
Olowinsky
, and
A.
Gillner
, “
Laser welding of biopolymers
,”
Procedia CIRP
74
,
548
552
(
2018
).
11.
V.
Mamuschkin
,
C.
Engelmann
, and
A.
Olowinsky
, “
Improvement of energy deposition in absorber-free laser welding through quasi-simultaneous irradiation
,”
Phys. Procedia
83
,
472
482
(
2016
).
12.
S.
Böhm
,
M.
Schmidt
,
T.
Stichel
,
M.
Kahlmeyer
,
I.
Kryukov
, and
N.
Sommer
, “
Single-step laser plastic deposition (LPD) using a near-infrared thulium fiber-laser
,”
Polym. Test.
81
,
106185
(
2020
).
13.
T.
Laumer
,
T.
Stichel
,
K.
Nagulin
, and
M.
Schmidt
, “
Optical analysis of polymer powder materials for selective laser sintering
,”
Polym. Test.
56
,
207
213
(
2016
).
14.
F.
Brueckner
 et al, “
Enhanced manufacturing possibilities using multi-materials in laser metal deposition
,”
J. Laser Appl.
30
,
032308
(
2018
).
15.
J.
Jyothi
,
A.
Biswas
,
P.
Sarkar
,
A.
Soum-Glaude
,
H. S.
Nagaraja
, and
H. C.
Barshilia
, “
Optical properties of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO tandem absorber coatings by phase-modulated spectroscopic ellipsometry
,”
Appl. Phys. A
123
,
496
(
2017
).
16.
A.
Sommereyns
,
T.
Hupfeld
,
B.
Gökce
,
S.
Barcikowski
, and
M.
Schmidt
, “
Evaluation of essential powder properties through complementary particle size analysis methods for laser powder bed fusion of polymers
,”
Procedia CIRP
94
,
116
121
(
2020
).
17.
M.
Schmid
,
Additive Fertigung mit Selektivem Lasersintern (SLS)
(
Springer Fachmedien, Wiesbaden
, Germany,
2016
).
18.
V. E.
Beal
,
R. A.
Paggi
,
G. V.
Salmoria
, and
A.
Lago
, “
Statistical evaluation of laser energy density effect on mechanical properties of polyamide parts manufactured by selective laser sintering
,”
J. Appl. Polym. Sci.
113
,
2910
2919
(
2009
).
19.
J.
Izdebska
and
S.
Thomas
,
Printing on Polymers
(
Elsevier
,
New York
,
2016
).
20.
T.
Rechtenwald
,
Quasi-isothermes Laserstrahlsintern von Hochtemperatur-Thermoplasten: Eine Betrachtung Werkstoff- und Prozessspezifischer Aspekte am Beispiel PEEK
(
Meisenbach
,
Bamberg
,
2011
).
21.
D.
Drummer
,
K.
Wudy
, and
M.
Drexler
,
AIP Conf. Proc.
1664
,
160007
(
2015
).
22.
J.
Wu
,
X.
Xu
,
Z.
Zhao
,
M.
Wang
, and
J.
Zhang
, “
Study in performance and morphology of polyamide 12 produced by selective laser sintering technology
,”
Rapid Prototyp. J.
24
,
813
820
(
2018
).
23.
K.
Wudy
,
D.
Drummer
,
F.
Kühnlein
, and
M.
Drexler
,
AIP Conf. Proc.
1593
,
691
695
(
2014
).
24.
D.
Drummer
,
M.
Drexler
, and
K.
Wudy
, “
Impact of heating rate during exposure of laser molten parts on the processing window of PA12 powder
,”
Phys. Procedia
56
,
184
192
(
2014
).
25.
M.
Drexler
,
M.
Lexow
, and
D.
Drummer
, “
Selective laser melting of polymer powder—Part mechanics as function of exposure speed
,”
Phys. Procedia
78
,
328
336
(
2015
).
26.
D.
Drummer
,
M.
Drexler
, and
K.
Wudy
,
AIP Conf. Proc.
1664
,
160006
(
2015
).
You do not currently have access to this content.