This paper presents a new approach in laser welding of Al-5052 and heat Al-6061 aluminum alloys, which are challenging materials for a good laser welding quality. The process consists of applying very small size of 0.1 mm to provide a high density of power that aims at imposing a high amount of heat that is required for aluminum alloys; simultaneously the wobbling technique is implemented to reduce the risk of overheating in the welding area. Having relied on the capability of the wobbling technique to distribute the generated heat, welding results contained negligible thermal defects compared to the usual defects such as underfill, undercut, and root reinforcement. The resulted welding zones show a fully penetrated welding quality for both alloys with a smooth weld seam at the top and root surface. Analysis indicates a higher tensile strength of 190 MPa for Al-5052 corresponding to an 18% decrease from the base metal, while this reduction of mechanical strength in the welded zone for Al-6061 was about 27%. Also, the hardness profile of Al-5052 reveals a small reduction in the fusion zone in contrast to Al-6061, for which a high hardness decrease happens in the welded zone. This approach is more profitable for the cost-effectiveness of the process since the laser power is set at a low range as the high-power density is mainly related to the small size of the spot diameter.

1.
H. C.
Kim
and
T. J.
Wallington
, “
Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: Review and harmonization
,”
Environ. Sci. Technol.
47
,
6089
6097
(
2013
).
2.
R.
Modaresi
,
S.
Pauliuk
,
A. N.
Løvik
, and
D. B.
Müller
, “
Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries
,”
Environ. Sci. Technol.
48
,
10776
10784
(
2014
).
3.
A.
Gullino
,
P.
Matteis
, and
F.
D’Aiuto
, “
Review of aluminum-to-steel welding technologies for car-body applications
,”
Metals
9
,
315
(
2019
).
4.
J.
Hirsch
and
T.
Al-Samman
, “
Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications
,”
Acta Mater.
61
,
818
843
(
2013
).
5.
D. M.
Abhijeet Bhowmik
, “
A comprehensive study of an aluminum alloy AL-5052
,”
Adv. Phys. Lett.
3
,
20
22
(
2016
).
6.
E.
Schubert
, “
Challenges in thermal welding of aluminium alloys
,”
World J. Eng. Technol.
06
,
296
303
(
2018
).
7.
H. S.
Takakuni Iwase
,
Kimihiro
Shibata
,
Bernd
Hohenberger
, and
Friedrich
Dausinger
, “
Dual-focus technique for high-power Nd:YAG laser welding of aluminum alloys
,”
Proc. SPIE
3888
,
348
358
(
2000
).
8.
R. H. M.
de Siqueira
,
A. C.
de Oliveira
,
R.
Riva
,
A. J.
Abdalla
,
C. A. R. P.
Baptista
, and
M. S. F.
de Lima
, “
Mechanical and microstructural characterization of laser-welded joints of 6013-T4 aluminum alloy
,”
J. Braz. Soc. Mech. Sci. Eng.
37
,
133
140
(
2014
).
9.
M.
Naeem
, “
7 - Developments in laser micro welding technology
,” in
Handbook of Laser Welding Technologies
, edited by
S.
Katayama
(
Woodhead Publishing
,
Sawston, United Kingdom
,
2013
), pp.
163
211
.
10.
S. V.
Kuryntsev
and
A. K.
Gilmutdinov
, “
The effect of laser beam wobbling mode in welding process for structural steels
,”
Int. J. Adv. Manuf. Technol.
81
,
1683
1691
(
2015
).
11.
A. L. D. C.
Higashi
and
M. S. F. D.
Lima
, “
Occurrence of defects in laser beam welded Al-Cu-Li sheets with t-joint configuration
,”
J. Aerosp. Technol. Manage.
4
,
421
429
(
2012
).
12.
L. H.
Shah
,
F.
Khodabakhshi
, and
A.
Gerlich
, “
Effect of beam wobbling on laser welding of aluminum and magnesium alloy with nickel interlayer
,”
J. Manuf. Processes
37
,
212
219
(
2019
).
13.
G.
Barbieri
,
F.
Cognini
,
M.
Moncada
,
A.
Rinaldi
, and
G.
Lapi
, “
Welding of automotive aluminum alloys by laser wobbling processing
,”
Mater. Sci. Forum
879
,
1057
1062
(
2017
).
14.
C.
Hagenlocher
,
M.
Sommer
,
F.
Fetzer
,
R.
Weber
, and
T.
Graf
, “
Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum
,”
Mater. Des.
160
,
1178
1185
(
2018
).
15.
L.
Wang
,
M.
Gao
,
C.
Zhang
, and
X.
Zeng
, “
Effect of beam oscillating pattern on weld characterization of laser welding of AL-6061 aluminum alloy
,”
Mater. Des.
108
,
707
717
(
2016
).
16.
Z.
Wang
,
J. P.
Oliveira
,
Z.
Zeng
,
X.
Bu
,
B.
Peng
, and
X.
Shao
, “
Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties
,”
Opt. Laser Technol.
111
,
58
65
(
2019
).
17.
W. A.
Ayoola
,
W. J.
Suder
, and
S. W.
Williams
, “
Parameters controlling weld bead profile in conduction laser welding
,”
J. Mater. Process. Technol.
249
,
522
530
(
2017
).
18.
F.
Vakili-Farahani
,
J.
Lungershausen
, and
K.
Wasmer
, “
Process parameter optimization for wobbling laser spot welding of Ti6Al4V alloy
,”
Phys. Procedia
83
,
483
493
(
2016
).
19.
B. N.
Coelho
,
M. S. F. D.
Lima
,
S. M. D.
Carvalho
, and
A. R. D.
Costa
, “
A comparative study of the heat input during laser welding of aeronautical aluminum alloy AA6013-T4
,”
J. Aerosp. Technol. Manage.
10
,
1
12
(
2018
).
20.
V.
Dimatteo
,
A.
Ascari
, and
A.
Fortunato
, “
Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials (Al-Cu and Cu-Al): Process optimization and characterization
,”
J. Manuf. Process.
44
,
158
165
(
2019
).
21.
S.
Li
,
G.
Mi
, and
C.
Wang
, “
A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy: Morphology, microstructure and mechanical properties
,”
J. Manuf. Process.
53
,
12
20
(
2020
).
22.
S.
Katayama
,
Y.
Kawahito
, and
M.
Mizutani
, “
Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects
,”
Phys. Procedia
5
,
9
17
(
2010
).
23.
L.
Wang
,
M.
Gao
, and
X.
Zeng
, “
Experiment and prediction of weld morphology for laser oscillating welding of AA6061 aluminium alloy
,”
Sci. Technol. Weld. Joining
24
,
334
341
(
2019
).
24.
T. E.
Abioye
,
N.
Mustar
,
H.
Zuhailawati
, and
I.
Suhaina
, “
Prediction of the tensile strength of aluminium alloy 5052-H32 fibre laser weldments using regression analysis
,”
Int. J. Adv. Manuf. Technol.
102
,
1951
1962
(
2019
).
25.
J.
Ahn
,
L.
Chen
,
E.
He
,
J. P.
Dear
, and
C. M.
Davies
, “
Optimisation of process parameters and weld shape of high power Yb-fibre laser welded 2024-T3 aluminium alloy
,”
J. Manuf. Process.
34
,
70
85
(
2018
).
26.
M.
Vyskoč
,
M.
Sahul
, and
M.
Sahul
, “
Effect of shielding gas on the properties of AW 5083 aluminum alloy laser weld joints
,”
J. Mater. Eng. Perform.
27
,
2993
3006
(
2018
).
27.
P.
Oliveira
,
J.
Costa
, and
A.
Loureiro
, “
Effect of laser beam welding parameters on morphology and strength of dissimilar AA2024/AA7075T-joints
,”
J. Manuf. Process.
35
,
149
160
(
2018
).
28.
M.
Sommer
,
J.-P.
Weberpals
, and
S.
Müller
, “
Utilization of laser beam oscillation to enhance the process efficiency for deep-penetration welding in aluminum
,”
J. Laser Appl.
29
,
022404
(
2017
).
29.
J.
Enz
,
M.
Kumar
,
S.
Riekehr
,
V.
Ventzke
,
N.
Huber
, and
N.
Kashaev
, “
Mechanical properties of laser beam welded similar and dissimilar aluminum alloys
,”
J. Manuf. Process.
29
,
272
280
(
2017
).
30.
J. W.
Bray
and
A. H.
Committee
, “
Aluminum mill and engineered wrought products
,” in
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
(
ASM International
, Novelty, USA,
1990
), Vol. 2.
31.
S.
Katayama
, “
Defect formation mechanisms and preventive procedures in laser welding
,” in
Handbook of Laser Welding Technologies
(
Elsevier
, Sawston, United Kingdom,
2013
), pp.
332
373
.
32.
V.
Kancharla
,
M.
Mendes
,
M.
Grupp
, and
B.
Baird
, “
Recent advances in fiber laser welding
,”
Biul. Inst. Spawal. Gliwicach
62
,
175
181
(
2018
).
33.
R. S.
Rana
,
R.
Purohit
, and
S.
Das
, “
Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites
,”
Int. J. Sci. Res. Publ.
2
,
1
7
(
2012
).
34.
J. A.
Vargas
,
J. E.
Torres
,
J. A.
Pacheco
, and
R. J.
Hernandez
, “
Analysis of heat input effect on the mechanical properties of Al-6061-T6 alloy weld joints
,”
Mater. Des. (1980–2015)
52
,
556
564
(
2013
).
35.
A.
Haboudou
,
P.
Peyre
,
A. B.
Vannes
, and
G.
Peix
, “
Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminium alloys
,”
Mater. Sci. Eng. A
363
,
40
52
(
2003
).
36.
R.
Braun
, “
Nd YAG laser butt welding of AA6013 using silicon and magnesium containing filler powders
,”
Mater. Sci. Eng. A
426
,
250
262
(
2006
).
37.
Q.
Chu
,
R.
Bai
,
H.
Jian
,
Z.
Lei
,
N.
Hu
, and
C. J. M. C.
Yan
, “
Microstructure, texture and mechanical properties of 6061 aluminum laser beam welded joints
,”
Mater. Charact.
137
,
269
276
(
2018
).
You do not currently have access to this content.