MoS2 nanoparticles (NPs) were prepared by nanosecond (ns) laser ablation in ethylene glycol using a Q-switched neodymium:ytterbium aluminum garnet laser at 1064 and 532 nm laser wavelengths. The influence of laser wavelengths in ns laser production of MoS2 NPs is not yet fully understood. The shape, structure, crystalline phase, stability, and optical and photoluminescence (PL) properties of NPs were studied using TEM, dynamic light scattering, scanning electron microscopy with energy-dispersive x-ray, x-ray diffraction (XRD), ultraviolet–visible (UV–Vis), PL, Fourier transform infrared, and Raman spectroscopy. The UV–Vis absorption spectroscopy showed that the optimum laser wavelength for preparing MoS2 NPs is 1064 nm. Also, the absorption peak intensity of MoS2 NPs prepared at 1064 nm was 3.95 times higher than that at a 532 nm wavelength. In the case of ablation with 1064 nm, the most of NPs had spherical shapes and well dispersed compared with 532 nm. While the samples had the same crystalline structure for both wavelengths, as the laser wavelength increased, the mean particle size decreased from 22 to 13 nm. This is because of a photofragmentation phenomenon.

1.
Z.
Xiaoli
, “
A review: The method for synthesis MoS2 monolayer
,”
Int. J. Nanomanuf.
10
,
489
499
(
2014
).
2.
C.
Lee
,
H.
Yan
,
L. E.
Brus
,
T. F.
Heinz
,
J.
Hone
, and
S.
Ryu
, “
Anomalous lattice vibrations of single and few-layer MoS2
,”
ACS Nano
4
,
2695
2700
(
2010
).
3.
S. W.
Han
,
G. B.
Cha
,
E.
Frantzeskakis
,
I. R.
Colambo
,
J.
Avila
,
Y. S.
Park
,
D.
Kim
,
J.
Hwang
,
J. S.
Kang
,
S.
Ryu
,
W. S.
Yun
,
S. C.
Hong
, and
M. C.
Asensio
, “
Band-gap expansion in the surface-localized electronic structure of MoS2 (0002)
,”
Phys. Rev. B
86
,
115105(1)
115105(5)
(
2012
).
4.
D.
Duphil
,
S.
Bastide
, and
C.
Lévy-Clément
, “
Chemical synthesis of molybdenum disulfide nanoparticles in an organic solution
,”
J. Mater. Chem.
12
,
2430
2432
(
2002
).
5.
S.-T.
Song
,
L.
Cui
,
J.
Yang
, and
X.-W.
Du
, “
Millisecond laser ablation of molybdenum target in reactive gas toward MoS2 fullerene-like nanoparticles with thermally stable photoresponse
,”
ACS Appl. Mater. Interfaces
7
,
1949
1954
(
2015
).
6.
B.
Li
,
L.
Jiang
,
X.
Li
,
P.
Ran
,
P.
Zuo
,
A.
Wang
,
L.
Qu
,
Y.
Zhao
,
Z.
Cheng
, and
Y.
Lu
, “
Preparation of monolayer MoS2 using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water
,”
Sci. Rep.
7
,
11182
(
2017
).
7.
H. G.
Baldovi
,
M.
Latorre-Sánchez
,
I.
Esteve-Adell
,
A.
Khan
,
A. M.
Asiri
,
S. A.
Kosa
, and
H.
Garcia
, “
Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H2 generation
,”
J. Nanopart. Res.
240
,
1
8
(
2016
).
8.
D.
Son
,
S.
In Chae
,
M.
Kim
,
M.
Kee Choi
,
J.
Yang
,
K.
Park
,
V. S.
Kale
,
J.
Hoon Koo
,
C.
Choi
,
M.
Lee
,
J.
Hoon Kim
,
T.
Hyeon
, and
D.
Hyeong Kim
, “
Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory
,”
Adv. Mater.
28
,
1
7
(
2016
).
9.
S. X.
Hou
,
C.
Wu
, and
Y. J.
Huo
, “
Controllable preparation of nano molybdenum disulfide by hydrothermal method
,”
Ceram. Silik.
61
,
158
162
(
2017
).
10.
A. S.
Meya
,
B.
Koplitz
, and
X.
Zhang
, “
Synthesis and characterization of MoS₂ nanostructures using pulsed-laser deposition system
,” in
2015 IEEE Nanotechnology Materials and Devices Conference (NMDC)
,
Anchorage, AK
(
IEEE
,
New York
,
2015
). , 1–2
11.
R. G.
Nikov
,
N.
Nedyalkova
,
P. A.
Atanasova
, and
D. B.
Karashanova
, “
Characterization of colloidal silver nanostructures produced by pulsed laser ablation in different liquids
,” in
Proc. SPIE
10226
,
102260E
(
2017
).
12.
N.
Krstulović
,
P.
Umek
,
K.
Salamon
, and
I.
Capan
, “
Synthesis of Al-doped ZnO nanoparticles by laser ablation of ZnO: Al2O3 target in water
,”
Mater. Res. Express
4
,
105003
(
2017
).
13.
K.
Zhang
,
D. S.
Ivanov
,
R. A.
Ganeev
,
G. S.
Boltaev
,
P. S.
Krishnendu
,
S. C.
Singh
,
M. E.
Garcia
,
I. N.
Zavestovskaya
, and
C.
Guo
, “
Pulse duration and wavelength effects of laser ablation on the oxidation, hydrolysis, and aging of aluminum nanoparticles in water
,”
Nanomaterials
9
,
1
19
(
2019
).
14.
M. I. S. M.
Hilmi Tana
,
A. F.
Omara
,
M.
Rashida
, and
U.
Hashim
, “
VIS-NIR spectral and particles distribution of Au, Ag, Cu, Al and Ni nanoparticles synthesized in distilled water using laser ablation
,”
Results Phys.
14
,
102497
(
2019
).
15.
G.
Compagnini
,
M. G.
Sinatra
,
G. C.
Messina
,
G.
Patanè
,
S.
Scalese
, and
O.
Puglisi
, “
Monitoring the formation of inorganic fullerene-like MoS2 nanostructures by laser ablation in liquid environments
,”
Appl. Surf. Sci.
258
,
5672
5676
(
2012
).
16.
T.
Oztas
,
H.
Sener Sen
,
E.
Durgun
, and
B.
Ortac
, “
Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment
,”
J. Phys. Chem. C
118
,
30120
30126
(
2014
).
17.
S.
Alkis
,
T.
Öztaş
,
L. E.
Aygün
,
F.
Bozkurt
,
A. K.
Okyay
, and
B.
Ortaç
, “
Thin film MoS2 nanocrystal based ultraviolet photodetector
,”
Opt. Express
20
,
21815
21820
(
2012
).
18.
Q.
Ma
,
V.
Motto-Ros
,
F.
Laye
,
J.
Yu
,
W.
Lei
,
X.
Bai
,
L.
Zheng
, and
H.
Zeng
, “
Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas
,”
J. Appl. Phys.
111
,
053301
(
2012
).
19.
R. T.
Mendieta
,
R.
Mondragón
,
V. P.
Belda
,
O. M.
Yero
,
J.
Lancis
,
J. E.
Juliá
, and
G. M.
Vega
, “
Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation
,”
Chem. Phys. Chem.
18
,
1055
1060
(
2017
).
20.
M.
Tajdidzadeh
,
B. Z.
Azmi
,
W. M. M.
Yunus
,
Z. A.
Talib
,
A. R.
Sadrolhosseini
,
K.
Karimzadeh
,
S. A.
Gene
, and
M.
Dorraj
, “
Synthesis of silver nanoparticles dispersed in various aqueous media using laser ablation
,”
Sci. World J.
2014
,
324921
(
2014
).
21.
R. A.
Ganeev
,
M.
Baba
,
A. I.
Ryasnyansky
,
M.
Suzuki
, and
H.
Kuroda
, “
Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids
,”
Opt. Commun.
240
,
437
448
(
2004
).
22.
M.
Cueto
,
M.
Sanz
,
M.
Oujja
,
F.
Gámez
,
B.
Martínez-Haya
, and
M.
Castillejo
, “
Platinum nanoparticles prepared by laser ablation in aqueous solutions: Fabrication and application to laser desorption ionization
,”
J. Phys. Chem. C
115
,
22217
22224
(
2011
).
23.
O.
Benavides
,
L.
Cruz May
,
E. B.
Mejia
,
J. A.
Ruz Hernandez
, and
A.
Flores Gil
, “
Laser wavelength effect on nanosecond laser light reflection in ablation of metals
,”
Laser Phys.
26
,
126101
(
2016
).
24.
C.
Liu
, “
A study of particle generation during laser ablation with applications
,”
Ph.D. thesis
,
University of California
,
2005
, pp.
1
189
.
25.
W.
Chan
,
R. S.
Averback
,
D. G.
Cahill
, and
A.
Lagoutchev
, “
Dynamics of femtosecond laser-induced melting of silver
,”
Phy. Rev. B
78
,
219901
(
2008
).
26.
V.
Amendola
and
M.
Meneghetti
, “
Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles
,”
Phys. Chem. Chem. Phys.
11
,
3805
3821
(
2009
).
27.
S. Z.
Mortazavi
,
P.
Parvin
,
A.
Reyhani
,
A.
Nozad Golikand
, and
S.
Mirershadi
, “
Effect of laser wavelength at IR (1064 nm) and UV (193 nm) on the structural formation of palladium nanoparticles in deionized water
,”
J. Phys. Chem. C
115
,
5049
5057
(
2011
).
28.
J. J.
Naddeo
,
M.
Ratti
,
S. M.
O’Malley
,
J. C.
Griepenburg
,
D. M.
Bubb
, and
E. A.
Klein
, “
Antibacterial properties of nanoparticles: A comparative review of chemically synthesized and laser-generated particles
,”
Adv. Sci. Eng. Med.
7
,
1044
1057
(
2015
).
29.
J. J.
Naddeo
and
D. M.
Bubb
, “
Mechanisms of nanoparticle generation by laser ablation in liquids
,” in
Encyclopedia of Nanotechnology
, edited by
B.
Bhushan
(
Springer
,
Dordrecht
,
2015
), pp.
1
6
.
30.
A. A.
Habieb
,
A. O.
Soary
, and
K. A.
Mohammed
, “
Effect of laser wavelength on the fabrication of gold nanoparticles by laser ablation
,”
Int. J. Res. Appl. Nat. Soc. Sci.
4
,
125
130
(
2016
).
31.
A.
Hamad
,
L.
Li
, and
Z.
Liu
, “
Comparison of characteristics of selected metallic and metal oxide nanoparticles produced by picosecond laser ablation at 532 and 1064 nm wavelengths
,”
Appl. Phys. A
122
,
1
15
(
2016
).
32.
M.
Stafe
,
I.
Vladoiu
, and
I. M.
Popescu
, “
Impact of the laser wavelength and fluence on the ablation rate of aluminum
,”
Cent. Eur. J. Phys.
6
,
327
331
(
2008
).
33.
G.
Yang
, “
Laser ablation in liquids: Applications in the synthesis of nanocrystals
,”
Prog. Mater. Sci.
52
,
648
698
(
2007
).
34.
Z.
Douglas
and
D. B.
Chrisey
, “
Pulsed laser ablation in liquid for micro-/nanostructure generation
,”
J. Photochem. Photobiol. C Photochem. Rev.
13
,
204
223
(
2012
).
35.
M.
Dell'Aglio
,
R.
Gaudiuso
,
O.
De Pascale
, and
A.
De Giacomo
, “
Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production
,”
Appl. Surf. Sci.
348
,
4
9
(
2015
).
36.
W.
Xing
,
Y.
Chen
,
X.
Wang
,
L.
Lv
,
X.
Ouyang
,
Z.
Ge
, and
H.
Huang
, “
MoS2 quantum dots with a tunable work function for high performance organic solar cells
,”
ACS Appl. Mater. Interfaces
8
,
26916
26923
(
2016
).
37.
W.
Gu
,
Y.
Yan
,
C.
Zhang
,
C.
Ding
, and
Y.
Xian
, “
One-step synthesis of water-soluble MoS2 quantum dots via a hydrothermal method as a fluorescent probe for hyaluronidase detection
,”
ACS Appl. Mater. Interfaces
8
,
11272
11279
(
2016
).
38.
B. C.
Helmly
,
W. E.
Lynch
, and
D. A.
Nivens
, “
Preparation and spectroscopic characterization of MoS2 and MoSe2 nanoparticles
,”
Spectrosc. Lett.
40
,
483
492
(
2007
).
39.
A.
Baladi
and
R.
Sarraf Mamoory
, “
Effect of laser wavelength and ablation time on pulsed laser ablation synthesis of Al nanoparticles in ethanol
,”
Int. J. Mod. Phys. Conf. Ser.
5
,
58
65
(
2012
).
40.
Z. I.
Abd-Alwahab
and
B. G.
Rasheed
, “
Antibacterial silver nanoparticles produced by Nd:YAG laser
,”
Al-Nahrain Journal for Engineering Sciences
18
,
315
321
(
2015
); available at https://nahje.com/index.php/main/article/view/195.
41.
A.
Baladi
and
R.
Sarraf Mamoory
, “
Study on wavelength and energy effects on pulsed laser ablation synthesis of aluminum nanoparticles in ethanol
,” in
Fifth International Conference on MEMS NANO and Smart Systems
, Dubai, United Arab Emirates (IEEE, Piscataway, NJ,
2009
), pp.
218
221
.
42.
A.
Semerok
,
C.
Chaleard
,
V.
Detalle
,
J.-L.
Lacour
,
P.
Mauchien
,
P.
Meynadier
,
C.
Nouvellon
,
B.
Salle
,
P.
Palianov
,
M.
Perdrix
, and
G.
Petite
, “
Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses
,”
Appl. Surf. Sci.
138–139
,
311
314
(
1999
).
43.
H.
Imam
,
K.
Elsayed
,
M. A.
Ahmed
, and
R.
Ramdan
, “
Effect of experimental parameters on the fabrication of gold nanoparticles via laser ablation
,”
Opt. Photonics J.
2
,
73
84
(
2012
).
44.
A.
Torrisi
,
M.
Cutroneo
,
L.
Torrisi
, and
J.
Vacík
, “
Biocompatible nanoparticles production by pulsed laser ablation in liquids
,”
J. Instrum.
15
,
C03053
C03053
(
2020
).
45.
S.
Barcikowski
,
A.
Hahn
,
A. V.
Kabashin
, and
B. N.
Chichkov
, “
Properties of nanoparticles generated during femtosecond laser machining in air and water
,”
Appl. Phys.
87
,
47
55
(
2007
).
46.
M.
Kalyva
,
G.
Bertoni
,
A.
Milionis
,
R.
Cingolani
, and
A.
Athanassiou
, “
Tuning of the characteristics of Au nanoparticles produced by solid target laser ablation into water by changing the irradiation parameters
,”
Microsc. Res. Tech.
73
,
937
943
(
2010
).
47.
R.
Intartaglia
,
G.
Das
,
K.
Bagga
,
A.
Gopalakrishnan
,
A.
Genovese
,
M.
Povia
,
E. D.
Fabrizio
,
R.
Cingolani
,
A.
Diasproa
, and
F.
Brandia
, “
Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications
,”
Phys. Chem. Chem. Phys.
15
,
3075
3082
(
2013
).
48.
G. G.
Guillén
,
V. A. Z.
Ibarra
,
M. I. M.
Palma
,
B.
Krishnan
,
D. A.
Avellaneda
, and
S.
Shaji
, “
Effects of liquid medium and ablation wavelength on properties of cadmium sulfide nanoparticles by pulsed laser ablation
,”
Chem. Phys. Chem.
18
,
1035
1046
(
2017
).
49.
M.-S.
Yeh
,
Y.-S.
Yang
,
Y.-P.
Lee
,
H.-F.
Lee
,
Y.-H.
Yeh
, and
C.-S.
Yeh
, “
Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol
,”
J. Phys. Chem. B
103
,
6851
6857
(
1999
).
50.
M.
Muniz-Miranda
,
C.
Gellini
,
A.
Simonelli
,
M.
Tiberi
,
F.
Giammanco
, and
E.
Giorgetti
, “
Characterization of copper nanoparticles obtained by laser ablation in liquids
,”
Appl. Phys. A
110
,
829
833
(
2013
).
51.
T.
Tsujia
,
K.
Iryob
,
N.
Watanabeb
, and
M.
Tsuji
, “
Preparation of silver nanoparticles by laser ablation in solution: Influence of laser wavelength on particle size
,”
Appl. Surf. Sci.
202
,
80
85
(
2002
).
52.
J.
Hoffman
,
J.
Chrzanowska
,
S.
Kucharski
,
T.
Moscicki
,
I. N.
Mihailescu
,
C.
Ristoscu
, and
Z.
Szymanski
, “
The effect of laser wavelength on the ablation rate of carbon
,”
Appl. Phys. A
117
,
395
400
(
2014
).
53.
O.
Van Overschelde
,
G.
Guisbiers
, and
R.
Snyders
, “
Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water
,”
APL Mater.
1
,
042114
(
2013
).
54.
V. A.
Hackley
and
J. D.
Clogston
, “
Measuring the hydrodynamic size of nanoparticles in aqueous media using batch-mode dynamic light scattering
,”
Methods Mol. Biol.
697
,
35
52
(
2011
).
55.
M. I. M.
Palma
,
B.
Krishnan
,
G. A. C.
Rodriguez
,
T. K.
Das Roy
,
D.
Avellaneda
, and
S.
Shaji
, “
Synthesis and properties of platinum nanoparticles by pulsed laser ablation in liquid
,”
J. Nanomater.
2016
,
9651637
(
2016
).
56.
A. V.
Kabashin
and
M.
Meunier
, “
Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water
,”
J. Appl. Phys.
94
,
7941
7943
(
2003
).
57.
H.
Lin
,
C.
Wang
,
J.
Wu
,
Z.
Xu
,
Y.
Huang
, and
C.
Zhang
, “
Colloidal synthesis of MoS2 quantum dots: Size-dependent tunable photoluminescence and bioimaging
,”
New J. Chem.
39
,
8492
8497
(
2015
).
58.
W.
Zhang
,
X.
Xiao
,
L.
Zheng
, and
C.
Wan
, “
Fabrication of TiO2/MoS2 composite photocatalyst and its photocatalytic mechanism for degradation of methyl orange under visible light
,”
Can. J. Chem. Eng.
93
,
1594
1602
(
2015
).
59.
D.
Bhattacharya
,
S.
Mukherjee
,
R. K.
Mitra
, and
S. K.
Ray
, “
Size dependent optical properties of MoS2 nanoparticles and their photo-catalytic applications
,”
Nanotechnology
31
,
145701
1457023
(
2020
).
60.
M.
Baby
and
K.
Rajeev Kumar
, “
Structural and optical characterization of stacked MoS2 nanosheets by hydrothermal method
,”
J. Mater. Sci. Mater. Electron.
29
,
4658
4667
(
2017
).
61.
S. P.
Burrows
, “
Infrared spectroscopic measurement of titanium dioxide nanoparticle shallow trap state energies
,”
M.Sc. thesis
,
University of Polytechnic Institute and State
,
2010
, pp.
1
149
.
62.
Y.
Liu
,
H.
Wang
,
X.
Yuan
,
Y.
Wu
,
H.
Wang
,
Y.
Zen Tan
, and
J. W.
Chew
, “
Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis
,”
Chem. Catalysis
1
,
44
68
(
2021
).
63.
C.
Henrist
,
K.
Traina
,
C.
Hubert
,
G.
Toussaint
,
A.
Rulmont
, and
R.
Cloots
, “
Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis
,”
J. Cryst. Growth
254
,
176
187
(
2003
).
64.
Y.
Suresh
,
S.
Annapurna
,
A. K.
Singh
, and
G.
Bhikshamaiah
, “
Green synthesis and characterization of tea decoction stabilized copper nanoparticles
,”
Int. J. Innov. Res. Sci. Eng. Technol.
3
,
11265
11270
(
2014
): available at www.ijirset.com.
65.
J.
Mauricio Aguirre
,
A.
Gutiérrez
, and
O.
Giraldo
, “
Simple route for the synthesis of copper hydroxy salts
,”
J. Braz. Chem. Soc.
22
,
546
551
(
2011
).
66.
G.
Socrates
,
Infrared and Raman Characteristic Group Frequencies: Tables and Charts
(
Wiley
,
New York
,
2001
).
67.
C.
Dablemont
,
P.
Lang
,
C.
Mangeney
,
J.-Y.
Piquemal
,
V.
Petkov
,
F.
Herbst
, and
G.
Viau
, “
FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina
,”
Langmuir
24
,
5832
5841
(
2008
).
68.
L.
Vieira
,
R.
Schennach
, and
B.
Gollas
, “
In situ PM-IRRAS of a glassy carbon electrode/deep eutectic solvent interface
,”
Phys. Chem. Chem. Phys.
17
,
12870
12880
(
2015
).
69.
W.
Sawodny
,
K.
Niedenzu
, and
J. W.
Dawson
, “
The vibrational spectrum of ethylene glycol
,”
Spectrochim. Acta A Mol. Spectrosc.
23
,
799
806
(
1967
).
70.
K.
Krishnan
and
R. S.
Krishnan
, “
Raman and infrared spectra of ethylene glycol
,”
Proc. Indian Acad. Sci. A
64
,
111
123
(
1966
).
71.
B.
Smith
,
Infrared Spectral Interpretation
(
CRC Press
, Boca Raton, FL,
1999
).
72.
B. H.
Stuart
,
Infrared Spectroscopy: Fundamentals and Applications
(
Wiley
,
New York
,
2004
).
73.
J.
Coates
, “
Interpretation of infrared spectra, A practical approach
,” in
Encyclopedia of Analytical Chemistry
(
Wiley
,
New York
,
2000
), pp.
10815
10837
.
74.
R. H.
Pramila Devamani
and
S.
Sivakami
, “
Synthesis and characterization of copper chromate nanoparticles
,”
J. Sci. Res.
1
,
836
839
(
2014
).
75.
T.
Petrov
,
I.
Markova-Deneva
,
O.
Chauvet
,
R.
Nikolov
, and
I.
Denev
, “
SEM and FT-IR spectroscopy study of Cu, Sn and Cu-Sn nanoparticles
,”
J. Uni. Chem. Tech. Metal.
47
,
197
206
(
2012
).
76.
Y.
Suresh
,
S.
Annapuma
,
G.
Bhikshamaiah
, and
A. K.
Singh
, “
Characterization of green synthesized copper nanoparticles: A novel approach
,” in
International Conference on Advanced Nanomaterials and Emerging Engineering Technologies
(
IEEE
,
New York
,
2013
), pp.
63
67
.
77.
R. M.
Silverstein
,
F. X.
Webster
, and
D. J.
Kiemle
,
Spectrometric Identification of Organic Compounds
(
Wiley
,
New York
,
2005
).
78.
S. V. P.
Vattikuti
and
C.
Byon
, “
Synthesis and characterization of molybdenum disulfide nanoflowers and nanosheets: Nanotribology
,”
J. Nanomater.
2015
,
710462
(
2015
).
79.
G.
Nagaraju
,
C. N.
Tharamani
,
G. T.
Chandrappa
, and
J.
Livage
, “
Hydrothermal synthesis of amorphous MoS2 nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate
,”
Nanoscale Res. Lett.
2
,
461
468
(
2007
).
80.
Y.
Zhang
,
P.
Chen
,
F.
Wen
,
C.
Huang
, and
H.
Wang
, “
Construction of polyaniline/molybdenum sulfide nanocomposite: Characterization and its electrocatalytic performance on nitrite
,”
Ionics
22
,
1095
1102
(
2016
).
81.
S.
Liu
,
X.
Zhang
,
H.
Shao
,
J.
Xu
,
F.
Chen
, and
Y.
Feng
, “
Preparation of MoS2 nanofibers by electrospinning
,”
Mater. Lett.
73
,
223
225
(
2012
).
82.
B.
Tang
,
Y.
Lin
,
Z.
Xing
,
Y.
Duan
,
S.
Pan
,
Y.
Dai
,
J.
Yu
, and
J.
Zou
, “
Porous coral reefs-like Mos2/nitrogen-doped bio-carbon as an excellent Pt support/Co-catalyst with promising catalytic activity and CO-tolerance for methanol oxidation reaction
,”
Electrochim. Acta
246
,
517
527
(
2017
).
83.
Y.
Jiang
,
L.
Miao
,
G.
Jiang
,
Y.
Chen
,
X.
Qi
,
X.
Jiang
,
H.
Zhang
, and
S.
Wen
, “
Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications
,”
Sci. Rep.
5
,
16372
(
2015
).
You do not currently have access to this content.