Aluminum alloy is the main material of pole ear plate and bus bar of power cells for new energy electric vehicles. In this paper, quasi-continuous wave (QCW) pulsed laser and single-mode continuous wave (CW) laser were used to conduct laser lap welding experiments on a 0.5 mm thick 1060 aluminum alloy and 2 mm thick 6061 aluminum alloy. The effects of these two laser sources on weld zone morphology and tensile force were compared. The experimental results show that the QCW pulsed laser welding is more likely to have porosity cracks and other defects, while the overall weld performance of the single-mode CW laser welding is obviously better than the former. In addition, the maximum tensile strength of the weld joint in QCW welding is about 861.02 N, while it can reach 1521.36 N in CW welding. The tensile force with CW laser welding is much higher than that required by the power battery industry standard, i.e., the tensile force of 800 N.

1.
J. C.
Benedyk
, “
Aluminum alloys for lightweight automotive structures A2
,” in
Materials, Design and Manufacturing for Lightweight Vehicles
, edited by
P. K.
Mallick
(
Woodhead Publishing
, Cambridge,
2010
), pp.
79
113
.
2.
F.
Matter
and
G.
Mathers
,
The Welding of Aluminium and Its Alloys
(
Woodhead Publishing
, Cambridge,
2002
).
3.
H.
Zhao
,
D. R.
White
, and
T.
DebRoy
, “
Current issues and problems in laser welding of automotive aluminium alloys
,”
Int. Mater. Rev.
44
,
238
266
(
1999
).
4.
K.-M.
Hong
and
Y. C.
Shin
, “
Prospects of laser welding technology in the automotive industry: A review
,”
J. Mater. Process. Technol.
245
,
46
69
(
2017
).
5.
F.
Khodabakhshi
,
A.
Simchi
,
A. H.
Kokabi
, and
A. P.
Gerlich
, “
Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al3Ti-reinforced nanocomposite and materials characterization
,”
Mater. Charact.
108
,
102
114
(
2015
).
6.
F.
Khodabakhshi
,
A.
Simchi
,
A. H.
Kokabi
,
A. P.
Gerlich
, and
M.
Nosko
, “
Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing
,”
Mater. Sci. Eng.:\ A
642
,
204
214
(
2015
).
7.
F.
Khodabakhshi
,
A.
Simchi
,
A. H.
Kokabi
, and
A. P.
Gerlich
, “
Similar and dissimilar friction-stir welding of an PM aluminum-matrix hybrid nanocomposite and commercial pure aluminum: Microstructure and mechanical properties
,”
Mater. Sci. Eng. A
666
,
225
237
(
2016
).
8.
F.
Khodabakhshi
,
A.
Simchi
,
A. H.
Kokabi
,
A. P.
Gerlich
,
M.
Nosko
, and
P.
Švec
, “
Influence of hard inclusions on microstructural characteristics and textural components during dissimilar friction-stir welding of an PM Al–Al2O3–SiC hybrid nanocomposite with AA1050 alloy
,”
Sci. Technol. Weld. Join.
22
,
412
427
(
2017
).
9.
F.
Khodabakhshi
,
M.
Haghshenas
,
J.
Chen
,
B. S.
Amirkhiz
,
J.
Li
, and
A. P.
Gerlich
, “
Bonding mechanism and interface characterisation during dissimilar friction stir welding of an aluminium/polymer bi-material joint
,”
Sci. Technol. Weld. Join.
22
,
182
190
(
2017
).
10.
F.
Khodabakhshi
,
M.
Haghshenas
,
S.
Sahraeinejad
,
J.
Chen
,
B.
Shalchi
,
J.
Li
, and
A. P.
Gerlich
, “
Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high density polyethylene
,”
Mater. Charact.
98
,
73
82
(
2014
).
11.
R.
Rafiei
,
A. O.
Moghaddam
,
M. R.
Hatami
,
F.
Khodabakhshi
,
A.
Abdolahzadeh
, and
A.
Shokuhfar
, “
Microstructural characteristics and mechanical properties of the dissimilar friction-stir butt welds between an Al–Mg alloy and A316L stainless steel
,”
Int. J. Adv. Manuf. Technol.
90
,
2785
2801
(
2017
).
12.
R.
Rafiei
,
M.
Shamanian
,
M.
Fathi
, and
F.
Khodabakhshi
, “
Dissimilar friction-stir lap welding of aluminum-magnesium (AA5052) and aluminum-copper (AA2024) alloys: Microstructural evolution and mechanical properties
,”
Int. J. Adv. Manuf. Technol.
94
(
A
),
1
18
(
2017
).
13.
P. W.
Fuerschbach
and
G. R.
Eisler
, “
Effect of laser spot weld energy and duration on melting and absorption
,”
Sci. Technol. Weld. Join.
7
,
241
246
(
2002
).
14.
E.
Assuncao
and
S.
Williams
, “
Comparison of continuous wave and pulsed wave laser welding effects
,”
Opt. Lasers Eng.
51
,
674
680
(
2013
).
15.
T.
Liu
,
X.
Zhan
,
Y.
Zhao
,
M.
Bai
, and
X.
Gong
, “
Study on 2219 aluminum alloy T-joint during dual laser-beam bilateral synchronous welding : Effect of the welding speed and incident beam angle on grain morphology
,”
Opt. Laser Technol.
119
,
105594
(
2019
).
16.
T.
Sathish
,
P.
Sevvel
,
P.
Sudharsan
, and
V.
Vijayan
, “
Investigation and optimization of laser welding process parameters for AA7068 aluminium alloy butt joint
,”
Mater. Today Proc.
37
(Part 2),
1672
1677
(
2021
).
17.
Z.
Jia
,
P.
Zhang
,
Z.
Yu
,
H.
Shi
,
D. W.
Hongbing Liu
,
X.
Ye
,
F.
Wang
, and
Y.
Tian
, “
Effect of pulse shaping on solidification process and crack in 5083 aluminum alloy by pulsed laser welding
,”
Opt. Laser Technol.
134
,
106608
(
2021
).
18.
A. W.
AlShaer
,
L.
Li
, and
A.
Mistry
, “
The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminium alloy for automotive component manufacture
,”
Opt. Laser Technol.
64
,
162
171
(
2014
).
19.
F.
Khodabakhshi
,
L. H.
Shah
, and
A. P.
Gerlich
, “
Dissimilar laser welding of an AA6022-AZ31 lap-joint by using Ni-interlayer: Novel beam-wobbling technique, processing parameters, and metallurgical characterization
,”
Opt. Laser Technol.
112
,
349
362
(
2019
).
20.
P.
Schmalen
,
P.
Plapper
,
I.
Peral
,
I.
Titov
,
O.
Vallcorba
, and
J.
Rius
, “
Composition and phases in laser welded Al-Cu joints by synchrotron x-ray microdiffraction
,”
Proc. CIRP
74
,
27
32
(
2018
).
21.
X.
Fan
,
L.
Chen
,
G.
Chen
,
G.
Zhao
, and
C.
Zhang
, “
Joining of 1060/6063 aluminum alloys based on porthole die extrusion process
,”
J. Mater. Process. Technol.
250
,
65
72
(
2017
).
22.
G.
Yang
,
J.
Hao
,
H.
Wang
,
P.
liang
,
L.
Ye
,
X.
He
,
Y.
Zhai
,
G.
Hao
, and
J.
Lin
, “
The microstructure evolution of 6061 aluminum alloy during dieless rolling thermal deformation
,”
Proc. Manuf.
50
,
51
55
(
2020
).
23.
Z.
MalekshahiBeiranvand
,
F.
MalekGhaini
,
H.
NaffakhMoosavy
,
M.
Sheikhi
,
M. J.
Torkamany
, and
M.
Moradi
, “
The relation between magnesium evaporation and laser absorption and weld penetration in pulsed laser welding of aluminum alloys: Experimental and numerical investigations
,”
Opt. Laser Technol.
128
,
106170
(
2020
).
24.
J.
Wang
,
H.-P.
Wang
,
X.
Wang
,
H.
Cui
, and
F.
Lu
, “
Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy
,”
Opt. Laser Technol.
66
,
15
21
(
2015
).
25.
Z.
Wang
,
J.
Shen
,
S.
Hu
,
T.
Wang
, and
X.
Bu
, “
Investigation of welding crack in laser welding-brazing welded TC4/6061 and TC4/2024 dissimilar butt joints
,”
J. Manuf. Process.
60
,
54
60
(
2020
).
You do not currently have access to this content.