Detailed knowledge about the laser-material interaction, especially the distribution of laser power absorption, is a prerequisite for the simulation and optimization of laser material processing. In this work, an algorithm based on ray tracing is presented to calculate the propagation and the absorption of a laser beam inside a complex 3D cutting kerf. To model the laser beam precisely, a ray source based on high-power intensity measurements of the laser beam emitted from a highly multimode step-index fiber is set up. For the 3D reconstruction of the cutting kerf geometry, a semicircle model derived from three characteristic lines of so-called “frozen cuts” is applied. The presented approach enables a direct simulation of the laser absorption inside the cutting kerf considering light propagation properties like beam degeneration, shadowing effects, and multiple reflections. As a benchmark, it is finally applied to analyze cutting experiments in stainless steel with an axicon telescope.

1.
See Optech Consulting
, http://optech-consulting.com/laser-market-data/ for 2020 market for lasers and laser systems for materials processing (last accessed November 16, 2020).
2.
W.
Reimann
,
M.
Dobler
,
M.
Goede
,
M.
Schmidt
, and
K.
Dilger
, “
Three-beam laser brazing of zinc-coated steel
,”
Int. J. Adv. Manuf. Technol.
90
,
317
328
(
2017
).
3.
M.
Jenne
,
D.
Flamm
,
T.
Ouaj
,
J.
Hellstern
,
J.
Kleiner
,
D.
Grossmann
,
M.
Koschig
,
M.
Kaiser
,
M.
Kumkar
, and
S.
Nolte
, “
High-quality tailored-edge cleaving using aberration-corrected Bessel-like beams
,”
Opt. Lett.
43
,
3164
3167
(
2018
).
4.
F. O.
Olsen
,
K. S.
Hansen
, and
J. S.
Nielsen
, “
Multibeam fiber laser cutting
,”
J. Laser Appl.
21
,
133
138
(
2009
).
5.
C.
Goppold
,
K.
Zenger
,
P.
Herwig
,
A.
Wetzig
,
A.
Mahrle
, and
E.
Beyer
, “
Experimental analysis for improvements of process efficiency and cut edge quality of fusion cutting with 1 μm laser radiation
,”
Phys. Procedia
56
,
892
900
(
2014
).
6.
D.
Flamm
,
D. G.
Grossmann
,
M.
Sailer
,
M.
Kaiser
,
F.
Zimmermann
,
K.
Chen
,
M.
Jenne
,
J.
Kleiner
,
J.
Hellstern
,
C.
Tillkorn
et al., “
Structured light for ultrafast laser micro-and nanoprocessing
,”
Opt. Eng.
60
,
025105
(
2021
).
7.
A. V.
Zaitsev
,
O. B.
Kovalev
,
A. M.
Orishich
, and
V. M.
Fomin
, “
Numerical analysis of the effect of the TEM00 radiation mode polarisation on the cut shape in laser cutting of thick metal sheets
,”
Quantum Elec.
35
,
200
204
(
2005
).
8.
E. H.
Amara
,
K.
Kheloufi
,
T.
Tamsaout
,
R.
Fabbro
, and
K.
Hirano
, “
Numerical investigations on high-power laser cutting of metals
,”
Appl. Phys. A
119
,
1245
1260
(
2015
).
9.
Y.
Qin
,
A.
Michalowski
,
R.
Weber
,
S.
Yang
,
T.
Graf
, and
X.
Ni
, “
Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries–the influence of diffraction and interference
,”
Opt. Express
20
,
26606
26617
(
2012
).
10.
H.
Hügel
and
T.
Graf
,
Laser in der Fertigung
(
Springer
,
Wiesbaden
,
2009
), Vol. 2.
11.
H.
Pang
,
T.
Haecker
,
A.
Bense
,
T.
Haist
, and
D.
Flamm
, “
Focal field analysis of highly multi-mode fiber beams based on modal decomposition
,”
Appl. Opt.
59
,
6584
6592
(
2020
).
12.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
(
Elsevier
,
Pergamon
,
2013
).
13.
A.
Michalowski
,
Untersuchungen zur Mikrobearbeitung von Stahl mit Ultrakurzen Laserpulsen
(
Herbert Utz Verlag
,
München
,
2014
), Vol. 76.
14.
D. J.
Griffiths
,
Introduction to Electrodynamics
(
American Association of Physics Teachers
,
College Park
,
2005
).
15.
O.
Bocksrocker
,
P.
Berger
,
B.
Regaard
,
V.
Rominger
, and
T.
Graf
, “
Characterization of the melt flow direction and cut front geometry in oxygen cutting with a solid state laser
,”
J. Laser Appl.
29
,
022202
(
2017
).
16.
B.
Michelt
and
J.
Schulze
, “
Die Spektralfarben des Nanometers
,”
Mikroproduktion
2
,
39
41
(
2005
).
17.
J. C.
Lagarias
,
J. A.
Reeds
,
M. H.
Wright
, and
P. E.
Wright
, “
Convergence properties of the Nelder–Mead simplex method in low dimensions
,”
SIAM J. Optim.
9
,
112
147
(
1998
).
18.
H.
Pang
and
T.
Haecker
, “
Laser cutting with annular intensity distribution
,”
Proc. CIRP
94
,
481
486
(
2020
).
19.
J.
Pocorni
,
J.
Powell
,
E.
Deichsel
,
J.
Frostevarg
, and
A. F. H.
Kaplan
, “
Fibre laser cutting stainless steel: Fluid dynamics and cut front morphology
,”
Opt. Laser Technol.
87
,
87
93
(
2017
).
20.
See the supplementary material at https://www.scitation.org/doi/suppl/10.2351/7.0000408 for visualization 1 of the absorption analysis based on the cutting experiment mentioned in Sec. IV with variation of beam positions. The laser beam position varies from 0.44 to 0.54mm. With the laser beam moving backward, the peak intensity and the global absorptance drop accordingly.
21.
D. T.
Carpenter
,
C. S.
Wood
,
O.
Lyngnes
, and
N. G.
Traggis
, “Ultra low absorption glasses and optical coatings for reduced thermal focus shift in high power optics,” in High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications (International Society for Optics and Photonics, Bellingham, 2012), Vol. 8239, p. 82390Y.

Supplementary Material

You do not currently have access to this content.