Liquid crystal polymers (LCPs) have received extensive attention in the field of 5G electronic device packaging because of their high performance as microwave substrates and packaging materials. This article describes the use of a two-wavelength picosecond laser, with a pulse duration of 8.8 ps and a repetition frequency of 100 kHz, to perform ablation experiments on a flexible LCP copper clad laminate. By fitting the experimental results, the calculated radiation exposure was found to be 3.1 and 4.45 J/cm2 at wavelengths of 1064 and 355 nm, respectively. In addition, it was revealed that the laser parameters and the material characteristics of the LCP seriously affected the quality of laser machining due to photopolymerization of the LCP at 1064 nm; in contrast, better results were obtained at 355 nm. Furthermore, the effect of scanning speed and average power on the microgroove etching process was investigated. Desirable etching results were obtained at a scanning speed of 500–700 mm/s and an average power of 2.5–3.5 W. The results of this study can be useful for the processing of LCP-encapsulated electronic devices.

1.
ITU-R
,
IMT Vision-Framework and Overall Objectives of the Future development of IMT for2020 and Beyond: ITU-R M, 2083[R]
(
ITU
,
Geneva
,
2015
).
2.
G.
Wang
,
D.
Thompson
,
M.
Tentzeris
, and
J.
Papapolymerou
, “
Low cost RF MEMS switches using LCP substrate[C]
,” in
34th European Microwave Conference, Netherlands, Amsterdam, 12–14 October 2004
(IEEE, 2005), Vol. 3, pp. 1441–1444.
3.
D.
Thompson
,
N.
Kingsley
,
G.
Wang
,
J.
Papapolymerou
, and
M. M.
Tentzeris
, “
RF characteristics of thin film liquid crystal polymer (LCP) packages for RF MEMS and MMIC integration[C]
,” in
IEEE MTT-S International Microwave Symposium Digest, Long Beach, California, 17 June 2005
(IEEE, 2005), Vol. 4, p. 860.
4.
M.
Chen
,
N.
Evers
,
C.
Kapusta
 et al, “
Development of a hermetically sealed enclosure for MEMS in chip-on-flex modules using liquid crystalline polymer (LCP)[C]
,” in
International Electronic Packaging Technical Conference and Exhibition, San Francisco, California, 17–22 July 2005
(ASME, 2009), Vol. 42002, pp. 2057–2060.
5.
N.
Kingsley
, “
Liquid crystal polymer: Enabling next-generation conformal and multilayer electronics-overview of the advantages, limitations and challenges in using liquid crystal polymer as a substrate or[J]
,”
Microwave J.
51
,
188
200
(
2008
), International ed.
6.
D. C.
Thompson
,
J.
Papapolymerou
, and
M. M.
Tentzeris
, “
High temperature dielectric stability of liquid crystal polymer at mm-wave frequencies [J]
,”
IEEE Microwave Wireless Comp. Lett.
15
,
561
563
(
2005
).
7.
D. C.
Thompson
,
M.
MTentzeris
, and
J.
Papapolymerou
, “
Experimental analysis of the water absorption effects on RF/mm-wave active/passive circuits packaged in multilayer organic substrates[J]
,”
IEEE Trans. Adv. Packaging
30
,
551
557
(
2007
).
8.
N.
Kingsley
, “
Liquid crystal polymer: Enabling next generation conformal and multilayer electronics [J]
,”
Microwave J.
51
,
188
200
(
2005
).
9.
L.
Jauniskis
,
B.
Farrell
, and
A.
Harvey
, “
LCP PCB based packaging for high-performance protection [J]
,”
Adv. Packaging
10
,
40
42
(
2006
).
10.
L.
Han
and
X.
Gao
, “
Modeling of bending characteristics on micromachined RF MEMS switch based on LCP substrate[J]
,”
IEEE Trans. Electron Devices
63
,
3707
3712
(
2016
).
11.
K.
Nanbu
,
S.
Ozawa
,
K.
Yoshida
,
K.
Saijo
, and
T.
Suga
, “
Low temperature bonded Cu/LCP materials for FPCs and their characteristics[J]
,”
IEEE Trans. Comp. Packaging Technol.
28
,
760
764
(
2005
).
12.
Y. M.
Choi
,
J.
Jung
,
A.
Lee
, and
S.
Hwang
, “
Photosensitive hybrid polysilsesquioxanes for etching-free processing of flexible copper clad laminate[J]
,”
Compos. Sci. Technol.
201
,
108556
(
2021
).
13.
R. R.
Gattass
and
E.
Mazur
, “
Femtosecond laser micromachining in transparent materials[J]
,”
Nat. Photonics
2
,
219
225
(
2008
).
14.
K.
Sugioka
and
Y.
Cheng
, “
Ultrafast lasers—Reliable tools for advanced materials processing[J]
,”
Light: Sci. Appl.
3
,
e149
(
2014
).
15.
M.
Malinauskas
,
P.
Danilevičius
, and
S.
Juodkazis
, “
Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses[J]
,”
Opt. Express
19
,
5602
5610
(
2011
).
16.
A.
Salama
,
L.
Li
,
P.
Mativenga
, and
A.
Sabli
, “
High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites[J]
,”
Appl. Phys. A
122
,
73
(
2016
).
17.
M.
Gedvilas
and
G.
Račiukaitis
, “
Investigation of UV picosecond laser ablation of polymers[C]//workshop on laser applications in Europe
,”
Proc. SPIE
6157
,
61570T
(
2005
).
18.
J.
Jandeleit
,
G.
Urbasch
,
H. D.
Hoffmann
,
H.-G.
Treusch
, and
E. W.
Kreutz
, “
Picosecond laser ablation of thin copper films[J]
,”
Appl. Phys. A Mater. Sci. Process.
63
,
117
121
(
1996
).
19.
J.
Li
,
R.
Zhu
, and
Y.
Huang
, “
Fabrication of microstructures by picosecond laser[J]
,”
Optik
232
,
166501
(
2021
).
20.
R. V.
Chkalov
,
D. A.
Kochuev
,
K. S.
Khorkov
,
A. A.
Voznesenskaya
, and
S. M.
Arakelian
, “
Precision formation of PCB topologies by femtosecond laser radiation[C]
,”
J. Phys.: Conf. Ser.
1164
,
012018
(
2019
).
21.
A.
Grzybowski
and
K.
Pietrzak
, “
Maria Goeppert-Mayer (1906–1972): Two-photon effect on dermatology[J]
,”
Clin. Dermatol.
31
,
221
225
(
2013
).
22.
E.
Sutcliffe
and
R.
Srinivasan
, “
Dynamics of UV laser ablation of organic polymer surfaces[J]
,”
J. Appl. Phys.
60
,
3315
3322
(
1986
).
23.
G.
Tovar
,
P. J.
Carreau
, and
H. P.
Schreiber
, “
Transesterification, morphology and some mechanical properties of thermotropic liquid crystal polymers/polycarbonate blends
,”
Colloids Surf. A: Physicochem. Eng. Asp.
161
,
213
223
(
2000
).
24.
M.
Spellauge
,
F.-C.
Loghin
,
J.
Sotrop
 et al, “
Ultra-short-pulse laser ablation and modification of fully sprayed single walled carbon nanotube networks[J]
,”
Carbon
138
,
234
242
(
2018
).
25.
E.
Stenzel
,
S.
Gogoll
,
J.
Sils
,
M.
Huisinga
,
H.
Johansen
,
G.
Kästner
,
M.
Reichling
, and
E.
Matthias
, “
Laser damage of alkaline-earth fluorides at 248nm and the influence of polishing grades[J]
,”
Appl. Surf. Sci.
109–110
,
162
167
(
1997
).
26.
M.
Lenzner
,
J.
Krüger
,
S.
Sartania
,
Z.
Cheng
,
Ch.
Spielmann
,
G.
Mourou
,
W.
Kautek
, and
F.
Krausz
, “
Femtosecond optical breakdown in dielectrics[J]
,”
Phys. Rev. Lett.
80
,
4076
4079
(
1998
).
27.
Z. H.
Shen
,
S. Y.
Zhang
,
J.
Lu
, and
X. W.
Ni
, “
Mathematical modeling of laser induced heating and melting in solids[J]
,”
Opt. Laser Technol.
33
,
533
537
(
2001
).
28.
K.
Sugioka
and
Y.
Cheng
, “
A tutorial on optics for ultrafast laser materials processing basic microprocessing system to beam shaping and advanced focusing methods[J]
,”
Adv. Opt. Technol.
1
,
353
364
(
2012
).
29.
T. M.
Malik
,
P. J.
Carreau
, and
N.
Chapleau
, “
Characterization of liquid crystalline polyester polycarbonate blends[J]
,”
Polym. Eng. Sci.
29
,
600
608
(
1989
).
30.
A.
Datta
and
D. G.
Baird
, “
Compatibilization of thermoplastic composites based on blends of polypropylene with two liquid crystalline polymers[J]
,”
Polymer
36
,
505
514
(
1995
).
31.
P.
Pisitsak
,
R.
Magaraphan
, and
S. C.
Jana
, “
Electrically conductive compounds of polycarbonate, liquid crystalline polymer, and multiwalled carbon nanotubes[J]
,”
J. Nanomater.
2012
,
1
10
.
You do not currently have access to this content.