Generally, sheet thickness plays a significant role in the selection of appropriate process parameters in order to produce high quality weld joint in the laser welding process. The heat sink capacity and weld penetration are known as two criteria that are mainly influenced by sheet thickness. In this study, the effect of sheet thickness, welding speed, nozzle distance, and laser power were investigated in order to determine the temperature distribution near the melt pool, dimensions of molten pool through experimental and numerical analysis. The weld joint mechanical characterization was determined via elongation rate and tensile strength. The highest value of tensile strength is about 80% of the typical base metal and the elongation of the welded samples achieved about 40% of the base metal. The thinner sheets showed more sensitivity related to the elongation of the joint by increasing the welding speed. Also, the temperature rise with increasing laser power near the melt pool for the thinner sheet was about 200 °C in comparison to the 3 mm sheet, which is about 90 °C. The obtained simulation results for the maximum temperature discrepancy at near the melt pool was 12 °C and 4 °C for 1 and 3 mm thickness orderly, which depicts good agreement with the temperature experimental results.

1.
G. Q.
Liu
,
X. D.
Gao
,
P. E. N. G.
Cong
,
X. H.
Liu
,
Y. J.
Huang
,
Y. X.
Zhang
, and
D. Y.
You
, “
Tensile resistance, microstructures of intermetallic compounds, and fracture modes of welded steel/aluminum joints produced using laser lap welding
,”
Trans. Nonferrous Met. Soc. China
30
,
2639
2649
(
2020
).
2.
Z. Z.
Xu
,
Z. Q.
Dong
,
Z. H.
Yu
,
W. K.
Wang
, and
J. X.
Zhang
, “
Relationships between microhardness, microstructure, and grain orientation in laser-welded joints with different welding speeds for Ti6Al4V titanium alloy
,”
Trans. Nonferrous Met. Soc. China
30
,
1277
1289
(
2020
).
3.
S.
Ramachandran
and
A. K.
Lakshminarayanan
, “
An insight into microstructural heterogeneities formation between weld subregions of laser welded copper to stainless steel joints
,”
Trans. Nonferrous Met. Soc. China
30
,
727
745
(
2020
).
4.
H.
Esmaily
,
A.
Habibolahzadeh
, and
M.
Tajally
, “
Improving pulsed laser weldability of duplex stainless steel to 5456 aluminum alloy via friction stir process reinforcing of aluminum by BNi-2 brazing alloy
,”
Trans. Nonferrous Met. Soc. China
29
,
1401
1412
(
2019
).
5.
S.
Yan
and
Y.
Shi
, “
Influence of laser power on microstructure and mechanical property of laser-welded Al/Cu dissimilar lap joints
,”
J. Manuf. Processes
45
,
312
321
(
2019
).
6.
G.
Shanthos Kumar
,
S.
Saravanan
,
R.
Vetriselvan
, and
K.
Raghukandan
, “
Numerical and experimental studies on the effect of varied pulse energy in Nd:YAG laser welding of Monel 400 sheets
,”
Infrared Phys. Technol.
93
,
184
191
(
2018
).
7.
G.
Shanthos Kumar
,
K.
Raghukandan
,
S.
Saravanan
, and
N.
Sivagurumanikandan
, “
Optimization of parameters to attain higher tensile strength in pulsed Nd: YAG laser welded Hastelloy C-276–Monel 400 sheets
,”
Infrared Phys. Technol.
100
,
1
10
(
2019
).
8.
A. K.
Singh
,
K. S.
Bal
,
S.
Sharma
,
A.
Harbajanka
,
M.
Prasad
,
D.
Dey
, and
A. R.
Choudhury
, “
Effect of beam offset on dissimilar laser beam welding of Ti6Al4V and inconel 718 superalloy
,” in
Advances in Additive Manufacturing and Joining
(
Springer
,
Singapore
,
2020
), pp.
533
544
.
9.
M.
Cheepu
,
D.
Venkateswarlu
,
P. N.
Rao
,
S. S.
Kumaran
, and
N.
Srinivasan
, “
Effect of process parameters and heat input on weld bead geometry of laser welded titanium Ti-6Al-4V alloy
,”
Mater. Sci. Forum
969
,
613
618
(
2019
).
10.
A.
ÇELEBİ
, “
Deformation and microstructural analysis of fiber laser and TIG welding of thin Ti6Al4V sheet by coordinate measurement machine (CMM)
,”
Politeknik Dergisi
23
,
1183
(
2010
).
11.
F.
Fomin
, “
On the fatigue behaviour and modelling of fatigue life for laser-welded Ti-6Al-4V
,”
Doctoral dissertation
,
Technische Universität Hamburg, 2019
.
12.
X.
Chen
,
Z.
Lei
,
Y.
Chen
,
Y.
Han
,
M.
Jiang
,
Z.
Tian
,
J.
Bi
,
S.
Lin
, and
N.
Jiang
, “
Effect of laser beam oscillation on laser welding–brazing of Ti/Al dissimilar metals
,”
Materials
12
,
4165
4174
(
2019
).
13.
N.
Dang
,
L.
Liu
,
C.
Lavogiez
,
E.
Maire
,
C.
Ma
, and
L.
Zhou
, “
In-situ SEM and EBSD analysis on plastic behavior of laser beam welding Ti-6Al-4V alloy
,”
Mater. China
38
,
279
285
(
2019
).
14.
J.
Liu
,
H.
Liu
,
X. L.
Gao
, and
H.
Yu
, “
Microstructure and mechanical properties of laser welding of Ti6Al4V to inconel 718 using Nb/Cu interlayer
,”
J. Mater. Process. Technol.
277
,
116467
(
2020
).
15.
H. E.
Emre
and
Ş.
Arslan
, “
Effect of laser welding on microstructure and mechanical properties of biomedical Ti6Al4V
,”
Appl. Phys. A
125
,
1
12
(
2019
).
16.
M.
Logesh
,
R.
Selvabharathi
,
T.
Thangeeswari
, and
S.
Palani
, “
Influence of severe double shot peening on microstructure properties of Ti 6Al-4V and titanium grade 2 dissimilar joints using laser beam welding
,”
Opt. Laser Technol.
123
,
105883
(
2020
).
17.
J.
Zhang
,
R.
Hu
,
S.
Pang
, and
A.
Huang
, “
Distribution of Al element of Ti-6Al-4V joints by fiber laser welding
,”
Coatings
9
,
566
576
(
2019
).
18.
A.
Mannucci
,
I.
Tomashchuk
,
A.
Mathieu
,
R.
Bolot
,
E.
Cicala
,
S.
Lafaye
, and
C.
Roudeix
, “
Pure vanadium insert for efficient joining of Ti6Al4V to 316L stainless steel with continuous Yb YAG laser
,” in
LIM
(
Lasers In Manufacturing Conference
,
Munich
,
2019
), Vol. 168.
19.
D.
Wu
,
A.
Van Nguyen
,
S.
Tashiro
,
X.
Hua
, and
M.
Tanaka
, “
Elucidation of the weld pool convection and keyhole formation mechanism in the keyhole plasma arc welding
,”
Int. J. Heat Mass Transfer.
131
,
920
931
(
2019
).
20.
L.
Huang
,
X.
Hua
,
D.
Wu
, and
F.
Li
, “
Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel
,”
J. Mater. Process. Technol.
252
,
421
431
(
2018
).
21.
X. F.
Liu
,
C. B.
Jia
,
C. S.
Wu
,
G. K.
Zhang
, and
J. Q.
Gao
, “
Measurement of the keyhole entrance and topside weld pool geometries in keyhole plasma arc welding with dual CCD cameras
,”
J. Mater. Process. Technol.
248
,
39
48
(
2017
).
22.
D.
Zhang
,
M.
Wang
,
C.
Shu
,
Y.
Zhang
,
D.
Wu
, and
Y.
Ye
, “
Dynamic keyhole behavior and keyhole instability in high power fiber laser welding of stainless steel
,”
Opt. Laser Technol.
114
,
1
9
(
2019
).
23.
Z.
Gao
,
P.
Jiang
,
G.
Mi
,
L.
Cao
, and
W.
Liu
, “
Investigation on the weld bead profile transformation with the keyhole and molten pool dynamic behavior simulation in high power laser welding
,”
Int. J. Heat Mass Transfer
116
,
1304
1313
(
2018
).
24.
E. R.
Akman
,
A.
Demir
,
T. I.
Canel
, and
T.
Sınmazçelik
, “
Laser welding of Ti6Al4V titanium alloys
,”
J. Mater. Process. Technol.
209
,
3705
3713
(
2009
).
25.
M.
Akbari
,
S.
Saedodin
,
D.
Toghraie
,
R.
Shoja-Razavi
, and
F.
Kowsari
, “
Experimental and numerical investigation of temperature distribution and melt pool geometry during pulsed laser welding of Ti6Al4V alloy
,”
Opt. Laser Technol.
59
,
52
59
(
2014
).
26.
M.
Kasuga
,
T.
Sano
, and
A.
Hirose
, “
Grain refining in weld metal using short-pulsed laser ablation during CW laser welding of 2024-T3 aluminum alloy
,”
Int. J. Extreme Manuf.
1
,
045003
(
2019
).
27.
C.
Zhang
,
J.
Zhu
,
H.
Zheng
,
H.
Li
,
S.
Liu
, and
G. J.
Cheng
, “
A review on microstructures and properties of high entropy alloys manufactured by selective laser melting
,”
Int. J. Extreme Manuf.
2
,
032003
(
2020
).
28.
Y.
Ai
,
P.
Jiang
,
C.
Wang
,
G.
Mi
, and
S.
Geng
, “
Experimental and numerical analysis of molten pool and keyhole profile during high-power deep-penetration laser welding
,”
Int. J. Heat Mass Transfer
126
,
779
789
(
2018
).
29.
B.
Chang
,
Z.
Yuan
,
H.
Cheng
,
H.
Li
,
D.
Du
, and
J.
Shan
, “
A study on the influences of welding position on the keyhole and molten pool behavior in laser welding of a titanium alloy
,”
Metals
9
,
1082
(
2019
).
30.
C. S.
Wu
,
H. T.
Zhang
, and
J.
Chen
, “
Numerical simulation of keyhole behaviors and fluid dynamics in laser–gas metal arc hybrid welding of ferrite stainless steel plates
,”
J. Manuf. Process.
25
,
235
245
(
2017
).
31.
D.
Wu
,
S.
Tashiro
,
X.
Hua
, and
M.
Tanaka
, “
Analysis of the energy propagation in the keyhole plasma arc welding using a novel fully coupled plasma arc-keyhole-weld pool model
,”
Int. J. Heat Mass Transfer
141
,
604
614
(
2019
).
32.
R.
Wang
,
Y.
Lei
, and
Y.
Shi
, “
Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet
,”
Opt. Laser Technol.
43
,
870
873
(
2011
).
33.
H.
Heidari
and
M.
Akbari
, “
Investigating the effect of process parameters on the temperature field and mechanical properties in pulsed laser welding of Ti6Al4V alloy sheet using response surface methodology
,”
Infrared Phys. Technol.
106
,
103267
(
2020
).
34.
M. J.
Donachie
,
Titanium: A Technical Guide
(
ASM International
, Detroit,
2000
).
35.
J. J.
Valencia
and
P. N.
Quested
,
Thermophysical Properties
(ASM International, Chicago,
2013
).
36.
K. C.
Mills
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys
(
Woodhead Publishing
, Sawston, Cambridge,
2002
).
37.
M.
Jamshidinia
,
F.
Kong
, and
R.
Kovacevic
, “
Numerical modeling of heat distribution in the electron beam melting® of Ti-6Al-4V
,”
J. Manuf. Sci. Eng.
135
,
061010
(
2013
).
38.
Wunderlich
, “
Surface tension and viscosity of industrial Ti-alloys measured by the oscillating drop method on board parabolic flights
,”
High Temp. Mater. Process.
27
,
401
412
(
2008
).
39.
D.
Basak
,
R.
Overfelt
, and
D.
Wang
, “
Measurement of specific heat capacity and electrical resistivity of industrial alloys using pulse heating techniques
,”
Int. J. Thermophys.
24
,
1721
1733
(
2003
).
40.
M.
Frewin
and
D.
Scott
, “
Finite element model of pulsed laser welding
,”
Weld. J. N. Y.
78
,
15-s
22-s
(
1999
).
41.
Y.
Touloukion
,
Thermophysical Properties of Matter
(
IFI/Plenum
,
New York
,
1970
), p.
153
.
42.
J.
Yang
,
S.
Sun
,
M.
Brandt
, and
Wenyi
Yan
, “
Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy
,”
J. Mater. Process. Technol.
210
,
2215
2222
(
2010
).
43.
M.
Dhahri
,
J. E.
Masse
,
J. F.
Mathieu
,
G.
Barreau
, and
M.
Autric
, “
Laser welding of AZ91 and WE43 magnesium alloys for automotive and aerospace industries
,”
Adv. Eng. Mater.
3
,
504
507
(
2001
).
44.
J. Y.
Lee
,
S. H.
Ko
,
D. F.
Farson
, and
C. D.
Yoo
, “
Mechanism of keyhole formation and stability in stationary laser welding
,”
J. Phys. D: Appl. Phys.
35
,
1570
(
2002
).
45.
P.
Xia
,
F.
Yan
,
F.
Kong
,
C.
Wang
,
J.
Liu
,
X.
Hu
, and
S.
Pang
, “
Prediction of weld shape for fiber laser keyhole welding based on finite element analysis
,”
Int. J. Adv. Manuf. Technol.
75
,
363
372
(
2014
).
46.
R.
Ducharme
,
P.
Kapadia
, and
J.
Dowden
, “
A mathematical model of the defocusing of laser light above a workpiece in laser material processing
,”
Int. Congr. Appl. Lasers Electro Opt.
1992
,
187
197
(
1992
).
47.
K.
Abderrazak
,
S.
Bannour
,
H.
Mhiri
,
G.
Lepalec
, and
M.
Autric
, “
Numerical and experimental study of molten pool formation during continuous laser welding of AZ91magnesium alloy
,”
Comput. Mater. Sci.
44
,
858
866
(
2009
).
48.
J. G.
Berryman
and
S. C.
Blair
, “
Kozeny–Carman relations and image processing methods for estimating Darcy’s constant
,”
J. Appl. Phys.
62
,
2221
2228
(
1987
).
49.
G.
Phanikumar
,
K.
Chattopadhyay
, and
P.
Dutta
, “
Modelling of transport phenomena in laser welding of dissimilar metals
,”
Int. J. Numer. Methods Heat Fluid Flow
11
,
156
174
(
2001
).
You do not currently have access to this content.