Biocompatibility has been a major concern in the field of medical implants, and the “stress shielding” effect can be detrimental to the growth of bone cells. In this work, a parametric irregular porous structure model based on bionics design was established. The influence of different parameters on the elastic modulus, compressive strength, average pore size, and porosity was investigated. An optimization model using the grey relational analysis was established by controlling the irregularity, seed points, and strut diameter. With the goal of meeting biological requirements, the optimization results showed that the elastic modulus decreased by 40.21% and the porosity increased by 17.58%. Irregularity had little effect on the elastic modulus, porosity, and average pore size, and it was negatively correlated with compressive strength. The strut diameter and seed points were positively correlated with the elastic modulus and compressive strength but negatively correlated with the porosity and average pore size, and the seed count had the largest impact. By adjusting these parametric models, the optimization factors were obtained based on the elastic modulus, porosity, average pore size, and compressive strength of human bone. These results provide theoretical guidance for studying the mechanical properties of irregular porous structures fabricated via selective laser melting.

1.
Y. S.
Hedberg
,
B.
Qian
,
Z. J.
Shen
,
S.
Virtanen
, and
I. O.
Wallinder
, “
In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting
,”
Dent. Mater.
30
,
525
534
(
2014
).
2.
T.
Habijan
,
C.
Haberland
,
H.
Meier
,
J.
Frenzel
,
J.
Wittsiepe
,
C.
Wuwer
,
C.
Greulich
,
T. A.
Schildhauer
, and
M.
Köller
, “
The biocompatibility of dense and porous nickel-titanium produced by selective laser melting
,”
Mater. Sci. Eng., C
33
,
419
426
(
2013
).
3.
C.
Chen
,
Y.
Hao
,
X.
Bai
,
J. J.
Ni
,
S. M.
Chung
,
F.
Liu
, and
I. S.
Lee
, “
3D printed porous Ti6Al4V cage: Effects of additive angle on surface properties and biocompatibility; bone ingrowth in Beagle tibia model
,”
Mater. Des.
175
,
107824
(
2019
).
4.
G. J.
Wang
,
L. D.
Shen
,
J. F.
Zhao
,
H. X.
Liang
,
D. Q.
Xie
,
Z. J.
Tian
, and
C. J.
Wang
, “
Design and compressive behavior of controllable irregular porous scaffolds: Based on Voronoi-Tessellation and for additive manufacturing
,”
ACS Biomater. Sci. Eng.
4
,
719
727
(
2018
).
5.
Z. F.
Li
,
C. Y.
Zhang
,
L. J.
Qi
, and
X. T.
Sun
, “
Selective laser melting bone-compatible pure titanium porous structure
,”
Appl. Mech. Mater.
423-426
,
833
836
(
2013
).
6.
A.
Barbas
,
A.-S.
Bonnet
,
P.
Lipinski
,
R.
Pesci
, and
G.
Dubois
, “
Development and mechanical characterization of porous titanium bone substitutes
,”
J. Mech. Behav. Biomed. Mater.
9
,
34
44
(
2012
).
7.
J.
Parthasarathy
,
B.
Starly
,
S.
Raman
, and
A.
Christensen
, “
Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)
,”
J. Mech. Behav. Biomed. Mater.
3
,
249
259
(
2010
).
8.
X.
Li
,
C. T.
Wang
,
L.
Wang
,
W. G.
Zhang
, and
Y. C.
Li
, “
Fabrication of bioactive titanium with controlled porous structure and cell culture in vitro
,”
Rare Met. Mater. Eng.
39
,
1697
1701
(
2010
).
9.
D.
Wang
,
Y. Q.
Yang
,
R. C.
Liu
,
D. M.
Xiao
, and
J. F.
Sun
, “
Study on the designing rules and processability of porous structure based on selective laser melting (SLM)
,”
J. Mater. Process. Technol.
213
,
1734
1742
(
2013
).
10.
C.
Simoneau
,
V.
Brailovski
, and
P.
Terriault
, “
Design, manufacture and tensile properties of stochastic porous metallic structures
,”
Mech. Mater.
94
,
26
37
(
2016
).
11.
Y. L.
Xu
,
D. Y.
Zhang
,
Y.
Zhou
,
W. D.
Wang
, and
X. Y.
Cao
, “
Study on topology optimization design, manufacturability, and performance evaluation of Ti-6Al-4V porous structures fabricated by selective laser melting (SLM)
,”
Materials
10
,
1048
(
2017
).
12.
C. Z.
Yan
,
L.
Hao
,
A.
Hussein
, and
P.
Young
, “
Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting
,”
J. Mech. Behav. Biomed. Mater.
51
,
61
73
(
2015
).
13.
J.
Čapek
,
M.
Machová
,
M.
Fousová
,
J.
Kubásek
,
D.
Vojtěch
,
J.
Fojt
,
E.
Jablonská
,
J.
Lipov
, and
T.
Ruml
, “
Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting
,”
Mater. Sci. Eng., C
69
,
631
639
(
2016
).
14.
D. K.
Pattanayak
,
T.
Matsushita
,
H.
Takadama
,
A.
Fukuda
,
M.
Takemoto
,
S.
Fujibayashi
,
K.
Sasaki
,
N.
Nishida
,
T.
Nakamura
, and
T.
Kokubo1
, “
Fabrication of bioactive porous Ti metal with structure similar to human cancellous bone by selective laser melting
,”
Bioceram. Dev. Appl.
1
,
1
3
(
2011
).
15.
U.
Meyera
,
C.
Runte
,
D.
Dirksen
,
T.
Stamm
,
T.
Fillies
,
U.
Joos
, and
H. P.
Wiesmann
, “
Image-based biomimetric approach to design and fabrication of tissue engineered bone
,”
Int. Congr. Ser.
1256
,
726
732
(
2003
).
16.
H. X.
Liang
,
Y. W.
Yang
,
D. Q.
Xie
,
L.
Li
,
N.
Mao
,
C. J.
Wang
,
Z. J.
Tian
,
Q.
Jiang
, and
L. D.
Shen
, “
Trabecular-like Ti-6Al-4V scaffolds for orthopedic: Fabrication by selective laser melting and in vitro biocompatibility
,”
J. Mater. Sci. Technol.
35
,
1284
1297
(
2019
).
17.
Y.
Du
,
H. X.
Liang
,
D. Q.
Xie
,
N.
Mao
,
J. F.
Zhao
,
Z. J.
Tian
,
C. J.
Wang
, and
L. D.
Shen
, “
Design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction based on Voronoi Tessellation and fabricated via selective laser melting (SLM)
,”
Mater. Chem. Phys.
239
,
121968
(
2020
).
18.
T.
Maconachie
,
M.
Leary
,
B.
Lozanovski
,
X. Z.
Zhang
,
M.
Qian
,
O.
Faruque
, and
M.
Brandt
, “
SLM lattice structures: Properties, performance, applications and challenges
,”
Mater. Des.
183
,
108137
(
2019
).
19.
Y. P.
Feng
,
A.
Blanquer
,
J.
Fornell
,
H.
Zhang
,
P.
Solsona
,
M. D.
Baró
,
S.
Suriñach
,
E.
Ibáñez
,
E.
García-Lecina
,
X.
Wei
, and
R.
Li
, “
Novel Fe–Mn–Si–Pd alloys: Insights into mechanical, magnetic, corrosion resistance and biocompatibility performances
,”
J. Mater. Chem. B
4
,
6402
6412
(
2016
).
20.
W. M.
Tucho
,
V. H.
Lysne
,
H.
Austbø
,
A.
Sjolyst-Kverneland
, and
V.
Hansen
, “
Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L
,”
J. Alloys Compd.
740
,
910
925
(
2018
).
21.
E.
Ramirez-Cedillo
,
J. A.
Sandoval-Robles
,
L.
Ruiz-Huerta
,
A.
Caballero-Ruiz
,
C. A.
Rodriguez
, and
H. R.
Siller
, “
Process planning guidelines in selective laser melting for the manufacturing of stainless steel parts
,”
Procedia Manuf.
26
,
973
982
(
2018
).
22.
S.
Ghouse
,
S.
Babu
,
K.
Nai
,
P. A.
Hooper
, and
J. R. T.
Jeffers
, “
The influence of laser parameters, scanning strategies and material on the fatigue strength of a stochastic porous structure
,”
Addit. Manuf.
22
,
290
301
(
2018
).
23.
J. Q.
Zhao
,
M.
Zhang
,
Y.
Zhu
,
X.
Li
,
L. J.
Wang
, and
J. C.
Hu
, “
A novel optimization design method of additive manufacturing oriented porous structures and experimental validation
,”
Mater. Des.
163
,
107550
(
2019
).
24.
J.
Fu
,
A.
Yamamoto
,
H. Y.
Kim
,
H.
Hosoda
, and
S.
Miyazaki
, “
Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility
,”
Acta Biomater.
17
,
56
67
(
2015
).
25.
R.
Zhang
and
R.
Guo
, “
Determination of crack tip stress intensity factors by singular Voronoi cell finite element model
,”
Eng. Fract. Mech.
197
,
206
216
(
2018
).
26.
H.
Wang
and
Q. H.
Qin
, “
Voronoi polygonal hybrid finite elements with boundary integrals for plane isotropic elastic problems
,”
Int. J. Appl. Mech.
9
,
1750031
(
2017
).
You do not currently have access to this content.