In this study, an ultrashort pulse laser is used to investigate the removal efficiency and the ablation quality of stainless steel. The employed solid state laser is capable of varying the pulse duration from 0.27 to 10 ps and generates bursts with an intraburst pulse repetition frequency of 65 MHz with up to nine pulses per burst. Depending on the fluence per pulse, the pulse duration, and the number of pulses per burst, the removal efficiency and the ablation quality are presented and discussed based on the depth of the ablation structures and the surface roughness of the structured bottoms. The results prove that compared to pulse durations in the picosecond regime, the ablation efficiency in the femtosecond regime is significantly higher. The removal efficiency per burst is not affected by an increase in the number of pulses in the burst, but a smoothing effect can be identified for a certain number of pulses in the burst depending on the fluence and the pulse duration, which has a positive effect on the ablation quality. The temperature distribution and the heat accumulation induced by the high intraburst pulse repetition frequency are calculated with a semiempirical two-temperature model. The simulation results demonstrate that the melting film depth has a major influence on the smoothing effect caused by the burst mode.

1.
B.
Neuenschwander
,
B.
Jaeggi
,
M.
Schmid
, and
G.
Hennig
, “
Surface structuring with ultra-short laser pulses: Basics, limitations and needs for high throughput
,”
Phys. Procedia
56
,
1047
1058
(
2014
).
2.
G.
Raciukaitis
,
M.
Brikas
,
P.
Gecys
,
B.
Voisiat
, and
M.
Gedvilas
, “
Use of high repetition rate and high power lasers in microfabrication: How to keep the efficiency high?
,”
J. Laser Micro/Nanoeng.
4
,
186
191
(
2009
).
3.
J.
Schille
,
L.
Schneider
, and
U.
Loeschner
, “
Process optimization in high-average-power ultrashort pulse laser microfabrication: How laser process parameters influence efficiency, throughput and quality
,”
Appl. Phys. A
120
,
847
855
(
2015
).
4.
P.
Lickschat
,
D.
Metzner
, and
S.
Weißmantel
, “
Fundamental investigations of ultrashort pulsed laser ablation on stainless steel and cemented tungsten carbide
,”
Int. J. Adv. Manuf. Technol.
109
,
1167
1175
(
2020
).
5.
D.
Metzner
,
M.
Olbrich
,
P.
Lickschat
,
A.
Horn
, and
S.
Weißmantel
, “
Experimental and theoretical determination of the effective penetration depth of ultrafast laser radiation in stainless steel
,”
Lasers Manuf. Mater. Process.
7
,
478
495
(
2020
).
6.
N. A.
Smirnov
,
S. I.
Kudryashov
,
P. A.
Danilov
,
A. A.
Rudenko
,
B.
Gakovic
,
D.
Milovanović
,
A. A.
Ionin
,
A. A.
Nastulyavichus
, and
S. F.
Umanskaya
, “
Microprocessing of a steel surface by single pulses of variable width
,”
Laser Phys. Lett.
16
,
056002
(
2019
).
7.
V.
Villerius
,
H.
Kooiker
,
J.
Post
, and
Y.
Pei
, “
Ultrashort pulsed laser ablation of stainless steels
,”
Int. J. Mach. Tools Manuf.
138
,
27
35
(
2019
).
8.
N.
Ackerl
,
G.
Fisch
,
J.
Auerswald
, and
K.
Wegener
, “
Evolution of microstructures on stainless steel induced by ultra-short pulsed laser ablation
,”
SN Appl. Sci.
2
,
1
10
(
2020
).
9.
R.
Lloyd
,
A.
Abdolvand
,
M.
Schmidt
,
P.
Crouse
,
D.
Whitehead
,
Z.
Liu
, and
L.
Li
, “
Laser-assisted generation of self-assembled microstructures on stainless steel
,”
Appl. Phys. A
93
,
117
122
(
2008
).
10.
S.
Brüning
,
G.
Jenke
,
K.
Du
, and
A.
Gillner
, “
High precision laser processing of steel surfaces with sub-ns-lasers
,”
Phys. Procedia
56
,
919
926
(
2014
).
11.
P.
Lickschat
,
J.
Schille
,
M.
Mueller
,
S.
Weissmantel
, and
G.
Reisse
, “Comparative study on microstructuring of steel using pico-and femtosecond laser pulses,” in
International Congress on Applications of Lasers & Electro-Optics
, Anaheim, CA, September 23–27, 2012, (Laser Institute of America, Orlando, FL, 2012), Vol. 2012, pp. 1261–1268.
12.
B.
Wu
,
P.
Liu
,
F.
Zhang
,
J.
Duan
,
X.
Wang
, and
X.
Zeng
, “
Effect of parameters on picosecond laser ablation of Cr12MoV cold work mold steel
,”
Appl. Phys. A
124
,
11
(
2018
).
13.
R.
De Loor
, “
Polygon scanner system for ultra short pulsed laser micro-machining applications
,”
Phys. Procedia
41
,
544
551
(
2013
).
14.
U.
Loeschner
,
J.
Schille
,
A.
Streek
,
T.
Knebel
,
L.
Hartwig
,
R.
Hillmann
, and
C.
Endisch
, “
High-rate laser microprocessing using a polygon scanner system
,”
J. Laser Appl.
27
,
S29303
(
2015
).
15.
D.
Metzner
,
P.
Lickschat
, and
S.
Weißmantel
, “
Laser micromachining of silicon and cemented tungsten carbide using picosecond laser pulses in burst mode: Ablation mechanisms and heat accumulation
,”
Appl. Phys. A
125
,
462
(
2019
).
16.
B.
Jäggi
,
D. J.
Förster
,
R.
Weber
, and
B.
Neuenschwander
, “
Residual heat during laser ablation of metals with bursts of ultra-short pulses
,”
Adv. Opt. Technol.
7
,
175
182
(
2018
).
17.
A.
Žemaitis
,
P.
Gečys
,
M.
Barkauskas
,
G.
Račiukaitis
, and
M.
Gedvilas
, “
Highly-efficient laser ablation of copper by bursts of ultrashort tuneable (fs-ps) pulses
,”
Sci. Rep.
9
,
1
8
(
2019
).
18.
B.
Neuenschwander
,
T.
Kramer
,
B.
Lauer
, and
B.
Jaeggi
, “Burst mode with ps-and fs-pulses: Influence on the removal rate, surface quality, and heat accumulation,”
Proc, SPIE
9350
, 93500U (2015).
19.
P.
Lickschat
,
A.
Demba
, and
S.
Weissmantel
, “
Ablation of steel using picosecond laser pulses in burst mode
,”
Appl. Phys. A
123
,
137
(
2017
).
20.
D.
Metzner
,
P.
Lickschat
, and
S.
Weißmantel
, “
High-quality surface treatment using GHz burst mode with tunable ultrashort pulses
,”
Appl. Surf. Sci.
531
,
147270
(
2020
).
21.
T.
Hirsiger
,
M.
Gafner
,
S.
Remund
,
M. V.
Chaja
,
A.
Urniezius
,
S.
Butkus
, and
B.
Neuenschwander
, “Machining metals and silicon with GHz bursts: Surprising tremendous reduction of the specific removal rate for surface texturing applications,”
Proc, SPIE
11267
, 112670T (2020).
22.
K.
Mishchik
,
G.
Bonamis
,
J.
Qiao
,
J.
Lopez
,
E.
Audouard
,
E.
Mottay
,
C.
Hönninger
, and
I.
Manek-Hönninger
, “
High-efficiency femtosecond ablation of silicon with GHz repetition rate laser source
,”
Opt. Lett.
44
,
2193
2196
(
2019
).
23.
G.
Bonamis
,
E.
Audouard
,
C.
Hönninger
,
J.
Lopez
,
K.
Mishchik
,
E.
Mottay
, and
I.
Manek-Hönninger
, “
Systematic study of laser ablation with GHz bursts of femtosecond pulses
,”
Opt. Express
28
,
27702
27714
(
2020
).
24.
P.
Elahi
,
Ö.
Akçaalan
,
C.
Ertek
,
K.
Eken
,
F.
Ö. Ilday
, and
H.
Kalaycoğlu
, “
High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal
,”
Opt. Lett.
43
,
535
538
(
2018
).
25.
S. I.
Anisimov
,
B. L.
Kapeliovich
, and
T. L.
Perelman
, “
Electron emission from metal surfaces exposed to ultrashort laser pulses
,”
Zh. Eksp. Teor. Fiz.
66
,
776
781
(
1974
) [Sov. Phys. JETP 66,
375
377
(
1974
)], see http://www.jetp.ac.ru/cgi-bin/e/index/e/39/2/p375?a=list.
26.
E.
Bévillon
,
J. P.
Colombier
,
B.
Dutta
, and
R.
Stoian
, “
Ab initio nonequilibrium thermodynamic and transport properties of ultrafast laser irradiated 316l stainless steel
,”
J. Phys. Chem. C
119
,
11438
11446
(
2015
).
27.
E.
Bévillon
,
R.
Stoian
, and
J. P.
Colombier
, “
Nonequilibrium optical properties of transition metals upon ultrafast electron heating
,”
J. Phys.: Condens. Matter
30
,
385401
(
2018
).
28.
D. J.
Förster
,
S.
Faas
,
S.
Gröninger
,
F.
Bauer
,
A.
Michalowski
,
R.
Weber
, and
T.
Graf
, “
Shielding effects and re-deposition of material during processing of metals with bursts of ultra-short laser pulses
,”
Appl. Surf. Sci.
440
,
926
931
(
2018
).
29.
C. S.
Kim
, “Thermophysical properties of stainless steels,” Technical Report (Argonne National Lab., Ill., USA, 1975).
30.
J.
Sotrop
,
M.
Domke
,
A.
Kersch
, and
H. P.
Huber
, “
Simulation of the melting volume in thin molybdenum films as a function of the laser pulse duration
,”
Phys. Procedia
41
,
520
523
(
2013
).
31.
S.
Schönecker
,
X.
Li
,
B.
Johansson
,
S. K.
Kwon
, and
L.
Vitos
, “
Thermal surface free energy and stress of iron
,”
Sci. Rep.
5
,
14860
(
2015
).
32.
D. E.
Gray
, American Institute of Physics Handbook (American Institute of Physics, 1972).
33.
G.
Schnell
,
U.
Duenow
, and
H.
Seitz
, “
Effect of laser pulse overlap and scanning line overlap on femtosecond laser-structured Ti6Al4V surfaces
,”
Materials
13
,
969
(
2020
).
34.
F.
Di Niso
,
C.
Gaudiuso
,
T.
Sibillano
,
F. P.
Mezzapesa
,
A.
Ancona
, and
P. M.
Lugarà
, “
Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates
,”
Opt. Express
22
,
12200
12210
(
2014
).
35.
J.
Furmanski
,
A.
Rubenchik
,
M.
Shirk
, and
B.
Stuart
, “
Deterministic processing of alumina with ultrashort laser pulses
,”
J. Appl. Phys.
102
,
073112
(
2007
).
36.
J.
Byskov-Nielsen
,
J.-M.
Savolainen
,
M. S.
Christensen
, and
P.
Balling
, “
Ultra-short pulse laser ablation of metals: Threshold fluence, incubation coefficient and ablation rates
,”
Appl. Phys. A
101
,
97
101
(
2010
).
37.
P.
Mannion
,
J.
Magee
,
E.
Coyne
,
G.
O’connor
, and
T.
Glynn
, “
The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air
,”
Appl. Surf. Sci.
233
,
275
287
(
2004
).
38.
M.
Pfeiffer
,
A.
Engel
,
S.
Weißmantel
,
S.
Scholze
, and
G.
Reisse
, “
Microstructuring of steel and hard metal using femtosecond laser pulses
,”
Phys. Procedia
12
,
60
66
(
2011
).
39.
C.
Gaudiuso
,
G.
Giannuzzi
,
A.
Volpe
,
P. M.
Lugarà
,
I.
Choquet
, and
A.
Ancona
, “
Incubation during laser ablation with bursts of femtosecond pulses with picosecond delays
,”
Opt. Express
26
,
3801
3813
(
2018
).
40.
I.
Artyukov
,
D.
Zayarniy
,
A. A.
Ionin
,
S. I.
Kudryashov
,
S. V.
Makarov
, and
P. N.
Saltuganov
, “
Relaxation phenomena in electronic and lattice subsystems on iron surface during its ablation by ultrashort laser pulses
,”
JETP Lett.
99
,
51
55
(
2014
).
41.
C. A.
Hartmann
,
T.
Fehr
,
M.
Brajdic
, and
A.
Gillner
, “
Investigation on laser micro ablation of steel using short and ultrashort IR multipulses
,”
J. Laser Micro/Nanoeng.
2
,
44
48
(
2007
).
42.
M.
Domke
,
V.
Matylitsky
, and
S.
Stroj
, “
Surface ablation efficiency and quality of fs lasers in single-pulse mode, fs lasers in burst mode, and ns lasers
,”
Appl. Surf. Sci.
505
,
144594
(
2020
).
43.
J.
Lopez
,
G.
Mincuzzi
,
R.
Devillard
,
Y.
Zaouter
,
C.
Hönninger
,
E.
Mottay
, and
R.
Kling
, “
Ablation efficiency of high average power ultrafast laser
,”
J. Laser Appl.
27
,
S28008
(
2015
).
44.
J.
Bonse
,
J.
Krüger
,
S.
Höhm
, and
A.
Rosenfeld
, “
Femtosecond laser-induced periodic surface structures
,”
J. Laser Appl.
24
,
042006
(
2012
).
45.
J.
Bonse
,
S.
Höhm
,
S. V.
Kirner
,
A.
Rosenfeld
, and
J.
Krüger
, “
Laser-induced periodic surface structures—A scientific evergreen
,”
IEEE J. Sel. Top. Quantum Electron.
23
,
9000615
(
2016
).
46.
F. A.
Müller
,
C.
Kunz
, and
S.
Gräf
, “
Bio-inspired functional surfaces based on laser-induced periodic surface structures
,”
Materials
9
,
476
(
2016
).
47.
K.
Ahmmed
,
C.
Grambow
, and
A.-M.
Kietzig
, “
Fabrication of micro/nano structures on metals by femtosecond laser micromachining
,”
Micromachines
5
,
1219
1253
(
2014
).
48.
A.
Gillner
,
M.
Jüngst
, and
P.
Gretzki
, “Multi parallel ultrashort pulse laser processing,” in Advanced Solid State Lasers, Berlin, Germany, October 4–9 2015 (Optical Society of America, Washington DC, 2015), pp. AF3A–5.
49.
F.
Fraggelakis
,
G.
Mincuzzi
,
I.
Manek-Hönninger
,
J.
Lopez
, and
R.
Kling
, “
Generation of micro-and nano-morphologies on a stainless steel surface irradiated with 257 nm femtosecond laser pulses
,”
RSC Adv.
8
,
16082
16087
(
2018
).
50.
L. V.
Zhigilei
,
Z.
Lin
, and
D. S.
Ivanov
, “
Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion
,”
J. Phys. Chem. C
113
,
11892
11906
(
2009
).
51.
J.
Mazumder
, “
Overview of melt dynamics in laser processing
,”
Opt. Eng.
30
,
1208
1220
(
1991
).
You do not currently have access to this content.