Laser-microdroplet interactions influence the quality of nanoparticle deposition on a substrate. When a microdroplet and its impinging spot are heated, the microdroplet can evaporate gently, boil immediately after impingement, or bounces back inhibiting the deposition process. The interaction between a laser and droplets carrying semiconductor and metal nanoparticles is studied for different laser powers. The results indicate that the laser is refocused by the droplets, and deposition of nanoparticles and formation of nanofeatures are achieved under certain conditions. On the other hand, when the laser power exceeds a critical value, heating up the substrate at a specific temperature, microdroplets bounce back from the substrate, except for the cases of liquids with low reflectance coefficient and high absorption coefficient, where a new laser-spraying regime is observed.

1.
J.
Thomas
,
P.
Gangopadhyay
,
E.
Araci
,
R. A.
Norwood
, and
N.
Peyghambarian
, “
Nanoimprinting by melt processing: An easy technique to fabricate versatile nanostructures
,”
Adv. Mater.
23
,
4782
4787
(
2011
).
2.
G.
Niu
and
X.
Chen
, “
When radionuclides meet nanoparticles
,”
Nat. Nanotechnol.
13
,
359
360
(
2018
).
3.
E.
Castillo-Orozco
,
R.
Kumar
, and
A.
Kar
, “
Laser-induced subwavelength structures by microdroplet superlens
,”
Opt. Express
27
,
8130
8142
(
2019
).
4.
W.
Chaze
,
O.
Caballina
,
G.
Castanet
,
J.-F.
Pierson
,
F.
Lemoine
, and
D.
Maillet
, “
Heat flux reconstruction by inversion of experimental infrared temperature measurements–application to the impact of a droplet in the film boiling regime
,”
Int. J. Heat Mass Transfer
128
,
469
478
(
2019
).
5.
B. S.
Gottfried
,
C. J.
Lee
, and
K. J.
Bell
, “
The Leidenfrost phenomenon: Film boiling of liquid droplets on a flat plate
,”
Int. J. Heat Mass Transfer
9
,
1167
1188
(
1966
).
6.
S.
Chandra
and
C. T.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. R. Soc. London A
432
,
13
41
(
1991
).
7.
T. C.
de Goede
,
K. G.
de Bruin
,
N.
Shahidzadeh
, and
D.
Bonn
, “
Predicting the maximum spreading of a liquid drop impacting on a solid surface: Effect of surface tension and entrapped air layer
,”
Phys. Rev. Fluids
4
,
053602
(
2019
).
8.
T.
Mao
,
D. C. S.
Kuhn
, and
H.
Tran
, “
Spread and rebound of liquid droplets upon impact on flat surfaces
,”
AIChE J.
43
,
2169
2179
(
1997
).
9.
A.
Karl
and
A.
Frohn
, “
Experimental investigation of interaction processes between droplets and hot walls
,”
Phys. Fluids
12
,
785
796
(
2000
).
10.
H.
Fujimoto
,
O.
Yosuke
,
O.
Tomohiro
, and
T.
Hirohiko
, “
Hydrodynamics and boiling phenomena of water droplets impinging on hot solid
,”
Int. J. Multiphase Flow
36
,
620
642
(
2010
).
11.
T.
Tran
,
H. J. J.
Staat
,
A.
Prosperetti
,
C.
Sun
, and
D.
Lohse
, “
Drop impact on superheated surfaces
,”
Phys. Rev. Lett.
108
,
036101
(
2012
).
12.
J. D.
Bernardin
,
C. J.
Stebbins
, and
I.
Mudawar
, “
Mapping of impact and heat transfer regimes of water drops impinging on polished surface
,”
Int. J. Heat Mass Transfer
40
,
247
267
(
1997
).
13.
H.
Chaves
,
A. M.
Kubitzek
, and
F.
Obermeier
, “
Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls
,”
Int. J. Multiphase Flow
20
,
470
476
(
1999
).
14.
N. Z.
Mehdizadeh
and
S.
Chandra
, “
Boiling during high-velocity impact of water droplets on a hot stainless steel surface
,”
Proc. R. Soc. London A
462
,
3115
3131
(
2006
).
15.
E.
Castillo-Orozco
,
R.
Kumar
, and
A.
Kar
, “
Laser electrospray printing of nanoparticles on flexible and rigid substrates
,”
J. Laser Appl.
31
,
022015
(
2019
).
16.
W.
Feng
,
Y. C.
Wan
,
X.
Shan
, and
H.
Zheng
, “
Patterning of aluminium metallized pet film using high repetition rate fiber laser
,”
J. Laser Appl.
31
,
022208
(
2019
).
17.
E.
Castillo-Orozco
,
A.
Kar
, and
R.
Kumar
, “
Electrospray mode transition of microdroplets with semiconductor nanoparticle suspension
,”
Sci. Rep.
7
,
5144
(
2017
).
18.
E.
Castillo-Orozco
,
A.
Kar
, and
R.
Kumar
, “
Non-dimensional groups for electrospray modes of highly conductive and viscous nanoparticle suspensions
,”
Sci. Rep.
10
,
4405
(
2020
).
19.
J. C.
Burton
,
A. L.
Sharpe
,
R. C. A.
van der Veen
,
A.
Franco
, and
S. R.
Nagel
, “
Geometry of the vapor layer under a Leidenfrost drop
,”
Phys. Rev. Lett.
109
,
074301
(
2012
).
20.
F.
Celestini
,
T.
Frisch
, and
Y.
Pomeau
, “
Take off of small leidenfrost droplets
,”
Phys. Rev. Lett.
109
,
034501
(
2012
).
21.
D.
McGloin
and
K.
Dholakia
, “
Bessel beams: Diffraction in a new light
,”
Contemp. Phys.
46
,
15
28
(
2005
).
22.
M. A.
Porras
,
C.
Ruiz-Jiménez
, and
J. C.
Losada
, “
Underlying conservation and stability laws in nonlinear propagation of axicon-generated Bessel beams
,”
Phys. Rev. A
92
,
063826
(
2015
).
23.
W. J.
Jasper
and
N.
Anand
, “
A generalized variational approach for predicting contact angles of sessile nano-droplets on both flat and curved surfaces
,”
J. Mol. Liq.
281
,
196
203
(
2019
).
24.
P. J.
Berenson
, “
Film-boiling heat transfer from a horizontal surface
,”
J. Heat Transfer
83
,
351
356
(
1961
).
25.
R. E.
Henry
, “
A correlation for the minimum film boiling temperature
,”
Chem. Eng. Prog. Symp. Ser.
70
,
81
90
(
1974
).
26.
S.
Yao
and
K.
Cai
, “
The dynamics and Leidenfrost temperature of drops impacting on a hot surface at small angles
,”
Exp. Therm. Fluid Sci.
1
,
363
(
1988
).
27.
J.
Bernardin
and
I.
Mudawar
, “
A Leidenfrost point model for impinging droplets and sprays
,”
J. Heat Transfer
126
,
272
(
2004
).
28.
V. N.
Smolyaninova
,
I. I.
Smolyaninov
,
A. V.
Kildishev
, and
V. M.
Shalaev
, “
Maxwell fish-eye and eaton lenses emulated by microdroplets
,”
Opt. Lett.
35
,
3396
3398
(
2010
).
29.
M.
Duocastella
,
C.
Florian
,
P.
Serra
, and
A.
Diaspro
, “
Sub-wavelength laser nanopatterning using droplet lenses
,”
Sci. Rep.
5
,
16199
(
2015
).
30.
D.
Tam
,
V.
von Arnim
,
G. H.
McKinley
, and
A. E.
Hosoi
, “
Marangoni convection in droplets on superhydrophobic surface
,”
J. Fluid Mech.
642
,
101
123
(
2009
).
31.
G.-J.
Michon
,
C.
Josserand
, and
T.
Séon
, “
Jet dynamics post drop impact on a deep pool
,”
Phys. Rev. Fluids
2
,
023601
(
2017
).
32.
A.
Saha
,
Y.
Wei
,
X.
Tang
, and
C.
Law
, “
Kinematics of vortex ring generated by a drop upon impacting a liquid pool
,”
J. Fluid Mech.
875
,
842
853
(
2019
).
33.
Y.
Shen
,
S.
Liu
,
C.
Zhu
,
J.
Tao
,
Z.
Chen
,
H.
Tao
,
L.
Pan
,
G.
Wang
, and
T.
Wang
, “
Bouncing dynamics of impact droplets on the convex superhydrophobic surfaces
,”
Appl. Phys. Lett.
110
,
221601
(
2017
).
34.
See the supplementary material at https://dx.doi.org/10.2351/7.0000332 with the Matlab script to compute the power absorbed by a microdroplet and for videos showing the dynamics of the Bessel beam-heated microdroplets.

Supplementary Material

You do not currently have access to this content.