Molten pool geometry, whose surface parameters may be extrapolated through direct process observations, has been identified as a fundamental indicator of stability in laser powder bed fusion (LPBF). However, a parameter that cannot be directly measured on industrial systems by means of conventional sensing equipment is the molten pool depth. Indeed, methods based on x-ray imaging demonstrated in the literature have helped to better understand the process. However, retrofitting such solutions to industrial systems does not appear as a viable route currently. Within the present investigation, a nonintrusive sensing method for the indirect measurement of subsurface molten pool geometry based on the detection of surface oscillations is presented. The analysis of frames acquired using a high-speed camera and a secondary illumination light allows the identification of the crests of capillary waves through bright reflections on the surface of the molten pool. The characteristic oscillation frequency of the surface ripples may be correlated with the penetration depth or to other subsurface geometrical parameters. Proof of concept testing of the sensing principle was conducted on two different materials, namely, AISI316L and IN718, by means of single track LPBF depositions. Experiments were conducted at different levels of laser emission power to induce variations in molten pool characteristics. The process was observed by employing an off-axis illumination light and a high-speed camera, which allowed acquisitions with high spatial and temporal resolution. The acquired frames were postprocessed to extract the oscillation indicator, and analysis of the power spectral density of the signal allowed for the identification of the oscillation frequency. Results show that oscillation frequencies range from 3 to 5.5 kHz. Molten pool penetration depth and cross-sectional area could be correlated with the oscillation frequencies for the inline detection of these parameters during LPBF depositions. For both materials, higher oscillation frequencies corresponded to a shallower molten pool and a smaller mass of molten material. Moreover, different characteristic curves of oscillation frequency variations as a function of the melt pool cross-sectional area were determined for IN718 and AISI316L.

1.
M.
Grasso
and
B. M.
Colosimo
, “
Process defects and in situ monitoring methods in metal powder bed fusion: A review
,”
Meas. Sci. Technol.
28
,
044005
(
2017
).
2.
S. K.
Everton
,
M.
Hirsch
,
P.
Stravroulakis
,
R. K.
Leach
, and
A. T.
Clare
, “
Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing
,”
Mater. Des.
95
,
431
445
(
2016
).
3.
T.
Craeghs
,
S.
Clijsters
,
E.
Yasa
,
F.
Bechmann
,
S.
Berumen
, and
J.
Kruth
, “
Determination of geometrical factors in layerwise laser melting using optical process monitoring
,”
Opt. Lasers Eng.
49
,
1440
1446
(
2011
).
4.
T.
Craeghs
,
F.
Bechmann
,
S.
Berumen
, and
J. P.
Kruth
, “
Feedback control of layerwise laser melting using optical sensors
,”
Phys. Procedia
5
,
505
514
(
2010
).
5.
A. G.
Demir
,
L.
Mazzoleni
,
L.
Caprio
,
M.
Pacher
, and
B.
Previtali
, “
Complementary use of pulsed and continuous wave emission modes to stabilize melt pool geometry in laser powder bed fusion
,”
Opt. Laser Technol.
113
,
15
26
(
2019
).
6.
E.
Vasileska
,
A. G.
Demir
,
B. M.
Colosimo
, and
B.
Previtali
, “
Layer-wise control of selective laser melting by means of inline melt pool area measurements
,”
J. Laser Appl.
32
,
022057
(
2020
).
7.
L. E.
Criales
,
Y. M.
Arısoy
,
B.
Lane
,
S.
Moylan
,
A.
Donmez
, and
T.
Özel
, “
Laser powder bed fusion of nickel alloy 625: Experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis
,”
Int. J. Mach. Tools Manuf.
121
,
22
36
(
2017
).
8.
P. A.
Hooper
, “
Melt pool temperature and cooling rates in laser powder bed fusion
,”
Addit. Manuf.
22
,
548
559
(
2018
).
9.
T.
Furumoto
,
T.
Ueda
,
M.
Rizal
, and
A.
Hosokawa
, “
Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera
,”
CIRP Ann. Manuf.
62
,
223
226
(
2013
).
10.
U.
Thombansen
and
P.
Abels
, “
Observation of melting conditions in selective laser melting of metals (SLM)
,”
Proc. SPIE
9741
,
97410S
(
2016
).
11.
C. L. A.
Leung
,
S.
Marussi
,
R. C.
Atwood
,
M.
Towrie
,
P. J.
Withers
, and
P. D.
Lee
, “
In situ x-ray imaging of defect and molten pool dynamics in laser additive manufacturing
,”
Nat. Commun.
9
,
1
9
(
2018
).
12.
N. D.
Parab
,
L. I.
Escano
,
K.
Fezzaa
,
W.
Everhart
,
A. D.
Rollett
,
L.
Chen
 et al, “
Ultrafast x-ray imaging of laser–metal additive manufacturing processes
,”
J. Synchrotron Radiat.
25
,
1467
1477
(
2018
).
13.
N. P.
Calta
,
J.
Wang
,
A. M.
Kiss
,
A. A.
Martin
,
P. J.
Depond
,
G. M.
Guss
,
V.
Thampy
,
A. Y.
Fong
,
J. N.
Weker
,
K. H.
Stone
,
C. J.
Tassone
 et al, “
An instrument for in situ time-resolved x-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes
,”
Rev. Sci. Instrum.
89
,
055101
(
2018
).
14.
R. J.
Renwick
and
R. W.
Richardson
, “
Experimental investigation of GTA weld pool oscillations
,”
Weld J.
62
,
29
35
(
1983
).
15.
C. D.
Sorensen
and
T. W.
Eagar
, “
Digital signal processing as a diagnostic tool for gas tungsten arc welding
,”
Adv. Weld. Sci. Technol.
1986
,
467
472
.
16.
H.
Maruo
and
Y.
Hirata
, “
Natural frequency and oscillation modes of weld pools. 1st report: Weld pool oscillation in full penetration welding of thin plate
,”
Weld Int.
7
,
614
619
(
1993
).
17.
C. D.
Sorensen
and
T. W.
Eagar
, “
Modeling of oscillations in partially penetrated weld pools
,”
J. Dyn. Syst. Meas. Control.
112
,
469
474
(
1990
).
18.
Y. H.
Xiao
and
G.
den Ouden
, “
A study of GTA weld pool oscillation
,”
Weld J.
69
,
289-s
293-s
(
1990
).
19.
C. D.
Yoo
and
R. W.
Richardson
, “
Modeling of weld pool oscillation using energy method
,”
Q. J. Jpn. Weld. Soc.
12
,
30
38
(
1994
).
20.
V. V.
Semak
,
J. A.
Hopkins
,
M. H.
McCay
, and
T. D.
McCay
, “
Melt pool dynamics during laser welding
,”
J. Phys. D Appl. Phys.
28
,
2443
2450
(
1995
).
21.
B.
Richter
,
N.
Blanke
,
C.
Werner
,
N. D.
Parab
,
T.
Sun
,
F.
Vollertsen
, and
F. E.
Pfefferkorn
, “
High-speed x-ray investigation of melt dynamics during continuous-wave laser remelting of selective laser melted Co-Cr alloy
,”
CIRP Ann.
68
,
229
232
(
2019
).
22.
L.
Caprio
,
A. G.
Demir
, and
B.
Previtali
, “
Comparative study between CW and PW emissions in selective laser melting
,”
J. Laser Appl.
30
,
032305
(
2018
).
23.
L.
Caprio
,
A. G.
Demir
,
B.
Previtali
, and
B. M.
Colosimo
, “
Determining the feasible conditions for processing lunar regolith simulant via laser powder Bed fusion
,”
Addit. Manuf.
32
,
101029
(
2019
).
24.
R.
Fabbro
, “
Melt pool and keyhole behaviour analysis for deep penetration laser welding
,”
J. Phys. D Appl. Phys.
43
,
445501
(
2010
).
25.
G. C.
Carter
and
A. H.
Nuttall
, “
A brief summary of a generalized framework for power spectral estimation
,”
Signal Process.
2
,
387
390
(
1980
).
26.
C. L.
Haley
and
M.
Anitescu
, “
Optimal bandwidth for multitaper spectrum estimation
,”
IEEE Signal Process. Lett.
24
,
1696
1700
(
2017
).
27.
M. J.
Prerau
,
R. E.
Brown
,
M. T.
Bianchi
,
J. M.
Ellenbogen
, and
P. L.
Purdon
, “
Sleep neurophysiological dynamics through the lens of multitaper spectral analysis
,”
Physiology
32
,
60
92
(
2017
).
28.
T.
Klein
,
M.
Vicanek
, and
G.
Simon
, “
Oscillations of the keyhole in penetration laser beam welding
,”
J. Phys. D Appl. Phys.
27
,
322
332
(
1994
).
29.
U.
Scipioni Bertoli
,
G.
Guss
,
S.
Wu
,
M. J.
Matthews
, and
J. M.
Schoenung
, “
In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing
,”
Mater Des.
135
,
385
396
(
2017
).
30.
L.
Mazzoleni
,
A. G.
Demir
,
L.
Caprio
,
M.
Pacher
, and
B.
Previtali
, “
Real-time observation of melt pool in selective laser melting: Spatial, temporal and wavelength resolution criteria
,”
IEEE Trans. Instrum. Meas.
69
,
4
(
2019
).
31.
W. E.
King
,
H. D.
Barth
,
V. M.
Castillo
,
G. F.
Gallegos
,
J. W.
Gibbs
,
D. E.
Hahn
,
C.
Kamath
, and
A. M.
Rubenchik
, “
Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing
,”
J. Mater. Process. Technol.
214
,
2915
2925
(
2014
).
32.
V.
Semak
,
J. A.
Hopkins
, and
M. H.
Mccay
, in International Congress on Applications of Lasers & Electro-Optics, San Diego, CA, Nov 17–20 1997 (
Laser Institute of America
,
1997
), pp. C11–C20.
33.
Y. H.
Xiao
and
G.
Den Ouden
, “
Weld pool oscillation during GTA welding of mild steel
,”
Weld. J.
72
,
428-s
–434 (
1993
).
34.
R.
Cunningham
,
C.
Zhao
,
N.
Parab
,
C.
Kantzos
,
J.
Pauza
,
K.
Fezzaa
,
T.
Sun
,
A. D.
Rollett
, “
Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging
,”
Science
363
,
849
852
(
2019
).
35.
J.
Trapp
,
A. M.
Rubenchik
,
G.
Guss
, and
M. J.
Matthews
, “
In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing
,”
Appl. Mater. Today
9
,
341
349
(
2017
).
36.
J.
Ye
,
S. A.
Khairallah
,
A. M.
Rubenchik
,
M. F.
Crumb
,
G.
Guss
,
J.
Belak
,
M. J.
Matthews
, “
Energy coupling mechanisms and scaling behavior associated with laser powder bed fusion additive manufacturing
,”
Adv. Eng. Mater.
21
,
1
9
(
2019
).
37.
Y. H.
Zhou
,
Z. H.
Zhang
,
Y. P.
Wang
,
G.
Liu
,
S. Y.
Zhou
,
Y. L.
Li
,
J.
Shen
, and
M.
Yan
, “
Selective laser melting of typical metallic materials: An effective process prediction model developed by energy absorption and consumption analysis
,”
Addit. Manuf.
25
,
204
217
(
2019
).
38.
K. C.
Mills
,
Recommended Values of Thermophysical Properties for Selected Commercial Alloys. Recommended Values of Thermophysical Properties for Selected Commercial Alloys
(
Woodhead
,
Abington, Cambridge
,
2002
).
39.
W. M.
Steen
and
J.
Mazumder
,
Laser Material Processing
(
Springer-Verlag
,
London
,
2010
), Vol. 1, p.
558
.
You do not currently have access to this content.