A laser beam oscillation method using Galvano mirrors, which allows wide weld beads and controls thermal stress distribution, was suggested to suppress the formation of solidification cracks in laser welds. In order to understand the solidification cracking behavior in relation to the bead shape, laser beam oscillation welding was performed under various oscillation widths and frequency conditions. To evaluate the effect of the oscillation parameter on solidification cracking susceptibility, a regression analysis based on the shape of the bead was performed. Stress distribution generated during the laser beam oscillation welding process was also analyzed using finite element modeling simulation. From the results, it was demonstrated that a high shrinkage stress field at the bottom of the partial penetrated bead suppresses the solidification cracking.

1.
M.
Sheikhi
,
F. M.
Ghaini
, and
H.
Assadi
, “
Prediction of solidification cracking in pulsed laser welding of 2024 aluminum alloy
,”
Acta Mater.
82
,
491
502
(
2015
).
2.
P.
Von Witzendorff
,
S.
Kaierle
,
O.
Suttmann
, and
L.
Overmeyer
, “
In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibility
,”
Metall. Mater. Trans. A
46
,
1678
1688
(
2015
).
3.
H.
Wei
,
J.
Chen
,
H.-P.
Wang
, and
B. E.
Carlson
, “
Thermomechanical numerical analysis of hot cracking during laser welding of 6XXX aluminum alloys
,”
J. Laser Appl.
28
,
022405
(
2016
).
4.
V.
Ploshikhin
,
A.
Prikhodovsky
,
A.
Ilin
,
M.
Makhutin
,
C.
Heimerdinger
, and
F.
Palm
, “
Influence of the weld metal chemical composition on the solidification cracking susceptibility of AA6056-T4 alloy
,”
Weld. World
50
,
46
50
(
2006
).
5.
B.
Hu
and
I.
Richardson
, “
Mechanism and possible solution for transverse solidification cracking in laser welding of high strength aluminium alloys
,”
Mater. Sci. Eng. A
9
,
287
294
(
2006
).
6.
Y.
Hiroto
,
Y.
Masahiro
, and
T.
Kazuyuki
, “
The study of prevention of solidification cracking in laser weld metal of Al-Mg-Si alloy
,”
J. Jpn. Weld. Soc.
18
,
422
430
(
2000
).
7.
L.
Wang
,
M.
Gao
,
C.
Zhang
, and
X.
Zeng
, “
Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy
,”
Mater. Des.
108
,
707
717
(
2016
).
8.
H.
Langrieger
,
F.
Krafft
,
M.
Mensinger
, and
F.
Oefele
, “
Thermomechanical analysis of the formation of hot cracks in remote laser welded aluminium fillet welds
,”
J. Laser Appl.
28
,
022414
(
2016
).
9.
B.-H.
Kim
,
N.-H.
Kang
,
Y.-H.
Park
,
Y.-N.
Ahn
,
C.-H.
Kim
, and
J.-H.
Kim
, “
A study to improve weld strength of Al 6k21-T4 alloy by using laser weaving method
,”
J. Weld. Joining
27
,
49
53
(
2009
).
10.
K.-D.
Choi
,
Y.-N.
Ahn
, and
C.
Kim
, “
Weld strength improvement for Al alloy by using laser weaving method
,”
J. Laser Appl.
22
,
116
119
(
2010
).
11.
K.
Komerla
,
S.
Gach
,
T.
Vossel
,
A.
Schwedt
,
A.
Bührig-Polaczek
,
U.
Reisgen
, and
W.
Bleck
, “
The effect of beam oscillations on the microstructure and mechanical properties of electron beam welded steel joints
,”
Int. J. Adv. Manuf. Technol.
102
,
2919
2931
(
2019
).
12.
S.
Tsirkas
,
P.
Papanikos
, and
T.
Kermanidis
, “
Numerical simulation of the laser welding process in butt-joint specimens
,”
J. Mater. Process. Technol.
134
,
59
69
(
2003
).
13.
J. R.
Chukkan
,
M.
Vasudevan
,
S.
Muthukumaran
,
R. R.
Kumar
, and
N.
Chandrasekhar
, “
Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation
,”
J. Mater. Process. Technol.
219
,
48
59
(
2015
).
14.
S.
Geng
,
P.
Jiang
,
X.
Shao
,
L.
Guo
, and
X.
Gao
, “
Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet
,”
J. Mater. Sci. Technol.
46
,
50
63
(
2020
).
15.
F.
Matsuda
and
K.
Nakata
, “
A new test specimen for self-restraint solidification crack susceptibility test of electron-beam welding bead: Fan-shaped cracking test
,”
Trans. JWRI
11
,
87
94
(
1982
).
16.
G.
Agarwal
,
H.
Gao
,
M.
Amirthalingam
, and
M.
Hermans
, “
Study of solidification cracking susceptibility during laser welding in an advanced high strength automotive steel
,”
Metals
8
,
673
(
2018
).
17.
C.
Wu
,
H.
Wang
, and
Y.
Zhang
, “
A new heat source model for keyhole plasma arc welding in FEM analysis of the temperature profile
,”
Weld. J.
85
,
284
291
(
2006
).
18.
M.
Awang
, “Simulation of friction stir spot welding (FSSW) process: Study of friction phenomena,” Ph.D. thesis, West Virginia University Libraries, 2007.
19.
E. L.
Rooy
,
Introduction to Aluminum and Aluminum Alloys in ASM Metals Handbook Volume 02: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
(
ASM International
, Materials Park, Ohio,
1990
).
You do not currently have access to this content.