A titanium alloy (Ti64) has α + β crystal orientations, and the β phase mainly appears in the SLM process since Ti64 melts above 1600 °C by laser irradiation and then solidifies. In order to control the crystal orientation and crystal grain size, the modulated pulse of laser was employed to control the heat input energy of laser in the SLM process in this study. After fabrication, the sample was cut to measure the Vickers hardness which was compared with that of the commercial Ti and Ti64; the continuous wave (CW) laser fabricated sample had a value close to that of pure Ti, and the fabricated sample using modulated pulse of laser had a value close to Ti64. It was considered that a phase was formed by using a CW laser and the α + β phase was formed by using modulated pulse of laser, suggesting the possibility of controlling the material structure by controlling the heat input of one layer which was formed by these processes.

1.
I.
Egry
,
D.
Holland-Moritz
,
R.
Novakvic
,
E.
Ricci
,
R.
Wunderlich
, and
N.
Sobczak
, “
Thermophysical properties of liquid ALTi-based alloys
,”
Int. J. Thermophys.
31
,
949
965
(
2010
).
2.
P.
Vlcak
,
F.
Cerny
,
J.
Drahokoupil
,
J.
Sepitka
, and
Z.
Tolde
, “
The microstructure and surface hardness of Ti6Al4V alloy implanted with nitrogen ions at an elevated temperature
,”
J. Alloys Compd.
620
,
48
54
(
2015
).
3.
A. H.
Liu
,
B. S.
Li
,
D. G.
Yan
, and
J. J.
Guo
, “
Wettability on Ti6Al4V on calcia-stabilized zirconia
,”
Mater. Lett.
73
,
40
42
(
2012
).
4.
M.
Boivineau
,
C.
Cagran
,
D.
Doytier
,
V.
Eyraud
,
M. H.
Nadal
,
B.
Wilthan
, and
G.
Pottlacher
, “
Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy
,”
Int. J. Thermophys.
27
,
507
529
(
2006
).
5.
B.
Vinet
,
J. P.
Garandet
,
B.
Marie
,
L.
Domergue
, and
B.
Drevet
, “
Surface tension measurements on industrial alloy by the drop-weight method
,”
Int. J. Thermophys.
25
,
869
883
(
2004
).
6.
S.
Schneider
,
I.
Egry
, and
I.
Seyhan
, “
Measurement of the surface tension of undercooled liquid Ti90Al6V4 by the oscillating drop technique”
,”
Int. J. Thermophys.
23
,
1241
1248
(
2002
).
7.
X.
Liu
,
P. K.
Chu
, and
C.
Ding
, “
Surface modification of titanium alloys, and related materials for medical applications
,”
Mater. Sci. Eng. R
47
,
49
121
(
2004
).
8.
R. M.
Saoubi
,
D.
Axinte
,
S. L.
Soo
,
C.
Nobel
,
H.
Attia
,
G.
Kappmeyer
,
S.
Engin
, and
W. M.
Sim
, “
Hogh performance cutting of advanced aerospace alloys and composite materials
,”
CIRP Ann.
64
,
557
580
(
2015
).
9.
R.
Kumar
,
O.
Prakash
, and
U.
Ramamurty
, “
Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V
,”
Acta Mater.
154
,
246
260
(
2018
).
10.
A.
Devaraj
,
V. V.
Joshi
,
A.
Srivastava
,
S.
Manandhar
,
V.
Moxson
,
V. A.
Duz
, and
C.
Lavender
, “
A low-cost hierarchical nanostructured beta-titanium alloy with high strength
,”
Nat. Commun.
7
,
1
8
(
2016
).
11.
W. E.
Frazier
, “
Metal additive manufacturing, a review
,”
J. Mater. Eng. Perform.
23
,
1917
1928
(
2014
).
12.
H. L.
Marcus
,
J. W.
Barlow
,
J. J.
Beaman
, and
D. L.
Bourell
, “
From computer to component in 15 minutes: The integrated manufacture of three-dimensional objects
,”
JOM
42
,
8
10
(
1990
).
13.
E. C.
Santos
,
M.
Shiomi
,
K.
Osakada
, and
T.
Laoui
, “
Rapid manufacturing of metal components by laser forming
,”
Int. J. Mach. Tools Manuf.
46
,
1459
1468
(
2006
).
14.
B.
Zhang
,
N. E.
Feinech
,
H. L.
Liao
, and
C.
Coddet
, “
Microstructure and magnetic properties of Fe-Ni alloy fabricated by selective laser melting Fe/Ni mixed powders
,”
J. Mater. Sci. Technol.
29
,
757
760
(
2013
).
15.
D.
Gu
,
Y.
Shen
, and
Z.
Lu
, “
Preparation of TiN-Ti5Si3 in situ composites by selective laser melting
,”
Mater. Lett.
63
,
1577
1579
(
2009
).
16.
Z.
Wang
,
K.
Guan
,
M.
Gao
,
X.
Li
,
X.
Chen
, and
X.
Zeng
, “
The microstructure and mechanical properties of deposited—IN718 by selective laser melting
,”
J. Alloys Compd.
513
,
518
523
(
2012
).
17.
Q.
Jia
and
G.
Dongdong
, “
Selective laser melting additive manufacturing of inconel718 super alloy parts: Densification, microstructure and properties
,”
J. Alloys Compd.
585
,
713
721
(
2014
).
18.
I.
Yadroitsev
,
P.
Krakhmalev
,
I.
Yadroitsava
,
S.
Johansson
, and
I.
Smurov
, “
Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder
,”
J. Mater. Process. Technol.
213
,
606
613
(
2013
).
19.
J. P.
Kruth
,
L.
Froyen
,
J. V.
Vaerenbergh
,
P.
Mercelis
,
M.
Rombouts
, and
B.
Lauwers
, “
Selective laser melting of iron-based powder
,”
J. Mater. Process. Technol.
149
,
616
622
(
2004
).
20.
M.
Cloots
,
P. J.
Uggowitzer
, and
K.
Wegener
, “
Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles
,”
Mater. Des.
89
,
770
784
(
2016
).
21.
D. D.
Gu
,
W.
Meiners
,
K.
Wissenbach
, and
R.
Poprawe
, “
Laser additive manufacturing of metallic components: materials, processes and mechanisms
,”
Int. Mater. Rev.
57
,
133
164
(
2012
).
22.
M. J.
Matthews
,
G.
Guss
,
S. A.
Khairallah
,
A. M.
Rubenchik
,
P. J.
Depond
, and
W. E.
King
, “
Denudation of metal powder layers in laser powder bed fusion processes
,”
Acta Mater.
114
,
33
42
(
2016
).
23.
Y.
Sakurai
and
K.
Kakehi
, “
Microstructure and mechanical properties of Ti-6Al-4V parts build by selective laser melting
,”
J. Jpn. Inst. Met. Mater.
81
,
120
126
(
2017
).
24.
W.
Xu
,
E. W.
Lui
,
A.
Pateras
,
M.
Qian
, and
M.
Brandt
, “
In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance
,”
Acta Mater.
125
,
390
400
(
2017
).
25.
E.
Sallica-Leva
,
A. L.
Jardini
, and
J. B.
Fogagnolo
, “
Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting
,”
J. Mech. Behav. Biomed. Mater.
26
,
98
108
(
2013
).
26.
C.
Qiu
,
N. J. E.
Adkins
, and
M. M.
Attallah
, “
Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V
,”
Mater. Sci. Eng. A
578
,
230
239
(
2013
).
27.
S.
Hamai
and
Y.
Sugiura
, “
Effect of β-region heat treatment conditions on mechanical properties of Ti–6Al–4V
,”
Tetsu-to-Hagane
78
,
125
132
(
1992
).
28.
Y.
Sato
,
M.
Tsukamoto
,
S.
Masuno
,
Y.
Yamashita
,
D.
Tanigawa
, and
N.
Abe
, “
Investigation of the microstructure and surface morphology of a Ti6Al4 V plate fabricated by vacuum selective laser melting
,”
Appl. Phys. A
122
,
439
443
(
2016
).
29.
Y.
Sato
,
M.
Tsukamoto
, and
Y.
Yamashita
, “
Surface morphology of Ti-6Al-4V plate fabricated by vacuum selective laser melting
,”
Appl. Phys. B
119
,
545
549
(
2015
).
You do not currently have access to this content.