Titanium dioxide (TiO2) has been a key material in a wide range of applications such as catalysis, energy harvesting, and antibacterial surfaces. Typically, different TiO2 phases are first synthesized and then coated onto the test parts. Here, the authors demonstrate a direct method for the formation of TiO2 nanostructures and patterns with rutile, anatase, and mixed phases by a controlled laser-assisted surface modification approach on additive manufacturing titanium parts. A tunable nanosecond fiber laser coupled to a galvo scanner was employed to regulate the laser material for a controlled and localized transformation process in an oxygen environment. The influence of processing conditions such as scanning speed, laser power, laser pulse duration, frequency, and gas flow rate on the selective formation of rutile, anatase, and mixed phases was studied. The structural evolutions and morphology have been investigated using different characterization techniques, including scanning electron microscopy and Raman spectroscopy methods. The main advantage of this laser-assisted process is its ability to create selective TiO2 phases on complex titanium parts such as implants.

1.
T.
Zhao
,
Y.
Zhao
, and
L.
Jiang
, “
Nano-/microstructure improved photocatalytic activities of semiconductors
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
371
,
20120303
(
2013
).
2.
R.
Asahi
,
T.
Morikawa
,
H.
Irie
, and
T.
Ohwaki
, “
Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects
,”
Chem. Rev.
114
,
9824
9852
(
2014
).
3.
A.
Pearson
,
H.
Zheng
,
K.
Kalantar-Zadeh
,
S. K
Bhargava
, and
V.
Bansal
, “
Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-switchable reducing agent for enhanced visible and solar light photocatalysis
,”
Langmuir
28
,
14470
14475
(
2012
).
4.
D. A.
Hanaor
and
C. C.
Sorrell
, “
Review of the anatase to rutile phase transformation
,”
J. Mater. Sci.
46
,
855
874
(
2011
).
5.
R.
Vijayalakshmi
and
V.
Rajendran
, “
Synthesis and characterization of nano-TiO2 via different methods
,”
Arch. Appl. Sci. Res.
4
,
1183
1190
(
2012
).
6.
A.
Fujishima
,
T. N.
Rao
, and
D. A.
Tryk
, “
Titanium dioxide photocatalysis
,”
J. Photochem. Photobiol. C Photochem. Rev.
1
,
1
21
(
2000
).
7.
P.
Löbl
,
M.
Huppertz
, and
D.
Mergel
, “
Nucleation and growth in TiO2 films prepared by sputtering and evaporation
,”
Thin Solid Films
251
,
72
79
(
1994
).
8.
K.
Nakata
and
A.
Fujishima
, “
TiO2 photocatalysis: Design and applications
,”
J. Photochem. Photobiol. C Photochem. Rev.
13
,
169
189
(
2012
).
9.
B. L.
Ellis
,
P.
Knauth
, and
T.
Djenizian
, “
Three-dimensional self-supported metal oxides for advanced energy storage
,”
Adv. Mater.
26
,
3368
3397
(
2014
).
10.
D.
Fattakhova-Rohlfing
,
A.
Zaleska
, and
T.
Bein
, “
Three-dimensional titanium dioxide nanomaterials
,”
Chem. Rev.
114
,
9487
9558
(
2014
).
11.
I. S.
Cho
,
Z.
Chen
,
A. J.
Forman
,
D. R.
Kim
,
P. M.
Rao
,
T. F.
Jaramillo
, and
X.
Zheng
, “
Branched TiO2 nanorods for photoelectrochemical hydrogen production
,”
Nano Lett.
11
,
4978
4984
(
2011
).
12.
J. M.
Frechet
, “
Dendrimers and other dendritic macromolecules from building blocks to functional assemblies in nanoscience and nanotechnology
,”
J. Polym. Sci. A Polym. Chem.
41
,
3713
3725
(
2003
).
13.
S.-J.
Bao
,
C.
Lei
,
M.-W.
Xu
,
C.-J.
Cai
, and
D.-Z.
Jia
, “
Environment-friendly biomimetic synthesis of TiO2 nanomaterials for photocatalytic application
,”
Nanotechnology
23
,
205601
(
2012
).
14.
A.
Fujishima
and
K.
Honda
, “
Electrochemical photolysis of water at a semiconductor electrode
,”
Nature
238
,
37
38
(
1972
).
15.
D.
Tryk
,
A.
Fujishima
, and
K.
Honda
, “
Recent topics in photoelectrochemistry: Achievements and future prospects
,”
Electrochim. Acta
45
,
2363
2376
(
2000
).
16.
G. M.
Crane
,
S. L.
Ishaug
, and
A. G.
Mikos
, “
Bone tissue engineering
,”
Nat. Med.
1
,
1322
1324
(
1995
).
17.
M.
Jokinen
,
M.
Pätsi
,
H.
Rahiala
,
T.
Peltola
,
M.
Ritala
, and
J. B.
Rosenholm
, “
Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method
,”
J. Biomed. Mater. Res.
42
,
295
302
(
1998
).
18.
X.
Liu
,
P. K.
Chu
, and
C.
Ding
, “
Surface modification of titanium, titanium alloys, and related materials for biomedical applications
,”
Mater. Sci. Eng. R Rep.
47
,
49
121
(
2004
).
19.
S.
Jain
,
R. S.
Williamson
, and
M. D.
Roach
, “
Surface characterization, shear strength, and bioactivity of anodized titanium prepared in mixed-acid electrolytes
,”
Surf. Coat. Technol.
325
,
594
603
(
2017
).
20.
T.-K.
Ahn
,
D. H.
Lee
,
T.-S.
Kim
,
G. C.
Jang
,
S. J.
Choi
,
J. B.
Oh
,
G.
Ye
, and
S.
Lee
, “
Modification of titanium implant and titanium dioxide for bone tissue engineering
,” in
Novel Biomaterials for Regenerative Medicine
(
Springer
, New York,
2018
), pp.
355
368.
21.
S.
Biswas
and
U.
Becker
, “
Molecular modeling of cell adhesion peptides on hydroxyapatite and TiO2 surfaces: Implication in biomedical implant devices
,”
J. Biomater. Nanobiotechnol.
4
,
351
356
(
2013
).
22.
W.
Su
,
J.
Zhang
,
Z.
Feng
,
T.
Chen
,
P.
Ying
, and
C.
Li
, “
Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy
,”
J. Phys. Chem. C
112
,
7710
7716
(
2008
).
You do not currently have access to this content.